1887

Abstract

(YFV), a reemerging disease agent in Africa and South America, is the prototype member of the genus . Based on examination of the prM/M, E and 3′ non-coding regions of the YFV genome, previous studies have identified seven genotypes of YFV, including the Angolan, east/central African and east African genotypes, which are highly divergent from the prototype strain Asibi. In this study, full genome analysis was used to expand upon these genetic relationships as well as on the very limited full genome database for YFV. This study was the first to investigate genomic sequences of YFV strains from east and central Africa (Angola71, Uganda48a and Ethiopia61b). All three viruses had genomes of 10 823 nt in length. Compared with the prototype strain Asibi (from west Africa) they were approximately 25 % divergent in nucleotide sequence and 7 % divergent in amino acid sequence. Comparison of multiple flaviviruses in the N-terminal region of NS4B showed that amino acid sequences were variable and that west African strains of YFV had an amino acid deletion at residue 21. Additionally, N-linked glycosylation sites were conserved between viral genotypes, while codon usage varied between strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81236-0
2006-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/895.html?itemId=/content/journal/jgv/10.1099/vir.0.81236-0&mimeType=html&fmt=ahah

References

  1. Andral, L., Bres, P., Serie, C., Casals, J. & Panthier, R. ( 1968; ). Studies on yellow fever in Ethiopia. 3. Serological and virological studies of the woodland fauna. Bull W H O 38, 855–861.
    [Google Scholar]
  2. Ballinger-Crabtree, M. E. & Miller, B. R. ( 1990; ). Partial nucleotide sequence of South American yellow fever virus strain 1899/81: structural proteins and NS1. J Gen Virol 71, 2115–2121.[CrossRef]
    [Google Scholar]
  3. Barrett, A. D. & Monath, T. P. ( 2003; ). Epidemiology and ecology of yellow fever virus. Adv Virus Res 61, 291–315.
    [Google Scholar]
  4. Bryant, J. E. & Barrett, A. D. ( 2003; ). Comparative phylogenies of yellow fever isolates from Peru and Brazil. FEMS Immunol Med Microbiol 39, 103–118.[CrossRef]
    [Google Scholar]
  5. Bryant, J., Wang, H., Cabezas, C., Ramirez, G., Watts, D., Russell, K. & Barrett, A. ( 2003; ). Enzootic transmission of yellow fever virus in Peru. Emerg Infect Dis 9, 926–933.[CrossRef]
    [Google Scholar]
  6. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  7. Chang, G. J., Cropp, B. C., Kinney, R. M., Trent, D. W. & Gubler, D. J. (1995; ). Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus. J Virol 69, 5773–5780.
    [Google Scholar]
  8. Colebunders, R., Mariage, J. L., Coche, J. C. & 9 other authors ( 2002; ). A Belgian traveler who acquired yellow fever in the Gambia. Clin Infect Dis 35, e113–e116.[CrossRef]
    [Google Scholar]
  9. Elazar, M., Liu, P., Rice, C. M. & Glenn, J. S. ( 2004; ). An N-terminal amphipathic helix in hepatitis C virus (HCV) NS4B mediates membrane association, correct localization of replication complex proteins, and HCV RNA replication. J Virol 78, 11393–11400.[CrossRef]
    [Google Scholar]
  10. Gao, L., Aizaki, H., He, J. W. & Lai, M. M. ( 2004; ). Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J Virol 78, 3480–3488.[CrossRef]
    [Google Scholar]
  11. Hahn, C. S., Dalrymple, J. M., Strauss, J. H. & Rice, C. M. ( 1987; ). Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc Natl Acad Sci U S A 84, 2019–2023.[CrossRef]
    [Google Scholar]
  12. Hanley, K. A., Manlucu, L. R., Gilmore, L. E., Blaney, J. E., Jr, Hanson, C. T., Murphy, B. R. & Whitehead, S. S. ( 2003; ). A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4. Virology 312, 222–232.[CrossRef]
    [Google Scholar]
  13. Jenkins, G. M. & Holmes, E. C. ( 2003; ). The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92, 1–7.[CrossRef]
    [Google Scholar]
  14. Jenkins, G. M., Pagel, M., Gould, E. A., de A Zanotto, P. M. & Holmes, E. C. ( 2001; ). Evolution of base composition and codon usage bias in the genus Flavivirus. J Mol Evol 52, 383–390.
    [Google Scholar]
  15. Jones, M., Davidson, A., Hibbert, L., Gruenwald, P., Schlaak, J., Ball, S., Foster, G. R. & Jacobs, M. ( 2005; ). Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79, 5414–5420.[CrossRef]
    [Google Scholar]
  16. Lai, V. C., Kao, C. C., Ferrari, E., Park, J., Uss, A. S., Wright-Minogue, J., Hong, Z. & Lau, J. Y. ( 1999; ). Mutational analysis of bovine viral diarrhea virus RNA-dependent RNA polymerase. J Virol 73, 10129–10136.
    [Google Scholar]
  17. Lepiniec, L., Dalgarno, L., Huong, V. T., Monath, T. P., Digoutte, J. P. & Deubel, V. ( 1994; ). Geographic distribution and evolution of yellow fever viruses based on direct sequencing of genomic cDNA fragments. J Gen Virol 75, 417–423.[CrossRef]
    [Google Scholar]
  18. McInerney, J. O. ( 1998; ). GCUA: general codon usage analysis. Bioinformatics 14, 372–373.[CrossRef]
    [Google Scholar]
  19. Monath, T. P. ( 1999; ). Facing up to re-emergence of urban yellow fever. Lancet 353, 1541.
    [Google Scholar]
  20. Munoz-Jordan, J. L., Sanchez-Burgos, G. G., Laurent-Rolle, M. & Garcia-Sastre, A. ( 2003; ). Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100, 14333–14338.[CrossRef]
    [Google Scholar]
  21. Mutebi, J. P., Wang, H., Li, L., Bryant, J. E. & Barrett, A. D. ( 2001; ). Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa. J Virol 75, 6999–7008.[CrossRef]
    [Google Scholar]
  22. Mutebi, J. P., Rijnbrand, R. C. A., Wang, H., Ryman, K. D., Wang, E., Fulop, L. D., Titball, R. & Barrett, A. D. T. ( 2004; ). Genetic relationships and evolution of genotypes of yellow fever virus and other members of the yellow fever virus group within the Flavivirus genus based on the 3′ noncoding region. J Virol 78, 9652–9665.[CrossRef]
    [Google Scholar]
  23. Muylaert, I. R., Chambers, T. J., Galler, R. & Rice, C. M. ( 1996; ). Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222, 159–168.[CrossRef]
    [Google Scholar]
  24. Pinto, M. R. & Filipe, A. R. ( 1973; ). Arbovirus studies in Luanda, Angola. 1. Virological and serological studies during a yellow fever epidemic. Bull W H O 49, 31–35.
    [Google Scholar]
  25. Pisano, M. R., Nicoli, J. & Tolou, H. ( 1997; ). Homogeneity of yellow fever virus strains isolated during an epidemic and a post-epidemic period in West Africa. Virus Genes 14, 225–234.[CrossRef]
    [Google Scholar]
  26. Robertson, S. E., Hull, B. P., Tomori, O., Bele, O., LeDuc, J. W. & Esteves, K. ( 1996; ). Yellow fever: a decade of reemergence. JAMA 276, 1157–1162.[CrossRef]
    [Google Scholar]
  27. Ruiz-Linares, A., Cahour, A., Despres, P., Girard, M. & Bouloy, M. ( 1989; ). Processing of yellow fever virus polyprotein: role of cellular proteases in maturation of the structural proteins. J Virol 63, 4199–4209.
    [Google Scholar]
  28. Serie, C., Casals, J., Panthier, R., Bres, P. & Williams, M. C. ( 1968; ). Studies on yellow fever in Ethiopia. 2. Serological study of the human population. Bull W H O 38, 843–854.
    [Google Scholar]
  29. Smithburn, K. C., Haddow, A. J. & Lumsden, W. H. R. ( 1949; ). An outbreak of sylvan yellow fever in Uganda with Aedes (Stegomyia) africanus Theobald as principal vector and insect host of the virus. Am J Trop Med 43, 74–89.
    [Google Scholar]
  30. Swofford, D. L. ( 2003; ). paup*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sunderland, MA: Sinauer Associates.
  31. Tomori, O. ( 1999; ). Impact of yellow fever on the developing world. Adv Virus Res 53, 5–34.
    [Google Scholar]
  32. Wang, E., Ryman, K. D., Jennings, A. D., Wood, D. J., Taffs, F., Minor, P. D., Sanders, P. G. & Barrett, A. D. ( 1995; ). Comparison of the genomes of the wild-type French viscerotropic strain of yellow fever virus with its vaccine derivative French neurotropic vaccine. J Gen Virol 76, 2749–2755.[CrossRef]
    [Google Scholar]
  33. Wang, E., Weaver, S. C., Shope, R. E., Tesh, R. B., Watts, D. M. & Barrett, A. D. ( 1996; ). Genetic variation in yellow fever virus: duplication in the 3′ noncoding region of strains from Africa. Virology 225, 274–281.[CrossRef]
    [Google Scholar]
  34. Wright, F. ( 1990; ). The ‘effective number of codons' used in a gene. Gene 87, 23–29.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81236-0
Loading
/content/journal/jgv/10.1099/vir.0.81236-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 895 - 907

[PDF](132 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error