1887

Abstract

The genome of (BUN; family , genus ) comprises three segments of negative-sense, single-stranded RNA. The RNA segments are encapsidated by the viral nucleocapsid (N) protein and form panhandle-like structures through interaction of complementary sequences at their 5′ and 3′ termini. Transcription and replication of a BUN genome analogue (minireplicon), comprising the viral non-coding sequences flanking a reporter gene, requires just the viral RNA polymerase (L protein) and N protein. Here, sequences of Bunyamwera serogroup M segment RNAs were compared and conserved elements within nt 20–33 of the 3′ and 5′ non-coding regions that can affect packaging of minireplicons into virions were identified. RNA-folding models suggest that a conserved sequence within nt 20–33 of the 5′ end of the genome segments maintains conserved structural features necessary for efficient transcription. Competitive packaging experiments using M, L and S segment-derived minireplicons that encode different reporter genes showed variable packaging efficiencies of the three segments. Packaging of a particular segment appeared to be independent of the presence of other segments and, for the S segment, packaging efficiency was unaffected by the inclusion of viral coding sequences in the minireplicon.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81227-0
2006-01-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/1/177.html?itemId=/content/journal/jgv/10.1099/vir.0.81227-0&mimeType=html&fmt=ahah

References

  1. Barr, J. N. & Wertz, G. W. ( 2004; ). Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. J Virol 78, 1129–1138.[CrossRef]
    [Google Scholar]
  2. Barr, J. N. & Wertz, G. W. ( 2005; ). Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. J Virol 79, 3586–3594.[CrossRef]
    [Google Scholar]
  3. Barr, J. N., Elliott, R. M., Dunn, E. F. & Wertz, G. W. ( 2003; ). Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311, 326–338.[CrossRef]
    [Google Scholar]
  4. Blakqori, G., Kochs, G., Haller, O. & Weber, F. ( 2003; ). Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J Gen Virol 84, 1207–1214.[CrossRef]
    [Google Scholar]
  5. Bowen, M. D., Trappier, S. G., Sanchez, A. J. & 7 other authors ( 2001; ). A reassortant bunyavirus isolated from acute hemorrhagic fever cases in Kenya and Somalia. Virology 291, 185–190.[CrossRef]
    [Google Scholar]
  6. Bridgen, A. & Elliott, R. M. ( 1996; ). Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93, 15400–15404.[CrossRef]
    [Google Scholar]
  7. Buchholz, U. J., Finke, S. & Conzelmann, K.-K. ( 1999; ). Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73, 251–259.
    [Google Scholar]
  8. Dunn, E. F., Pritlove, D. C., Jin, H. & Elliott, R. M. ( 1995; ). Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211, 133–143.[CrossRef]
    [Google Scholar]
  9. Elliott, R. M. ( 1996; ). The bunyaviridae: concluding remarks and future prospects. In The Bunyaviridae, pp. 295–332. Edited by R. M. Elliott. New York: Plenum.
  10. Elliott, R. M. ( 1997; ). Emerging viruses: the Bunyaviridae. Mol Med 3, 572–577.
    [Google Scholar]
  11. Flick, R. & Pettersson, R. F. ( 2001; ). Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75, 1643–1655.[CrossRef]
    [Google Scholar]
  12. Flick, R., Elgh, F. & Pettersson, R. F. ( 2002; ). Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance. J Virol 76, 10849–10860.[CrossRef]
    [Google Scholar]
  13. Flick, K., Hooper, J. W., Schmaljohn, C. S., Pettersson, R. F., Feldmann, H. & Flick, R. ( 2003a; ). Rescue of hantaan virus minigenomes. Virology 306, 219–224.[CrossRef]
    [Google Scholar]
  14. Flick, R., Flick, K., Feldmann, H. & Elgh, F. ( 2003b; ). Reverse genetics for Crimean-Congo hemorrhagic fever virus. J Virol 77, 5997–6006.[CrossRef]
    [Google Scholar]
  15. Flick, K., Katz, A., Överby, A., Feldmann, H., Pettersson, R. F. & Flick, R. ( 2004; ). Functional analysis of the noncoding regions of the Uukuniemi virus (Bunyaviridae) RNA segments. J Virol 78, 11726–11738.[CrossRef]
    [Google Scholar]
  16. Fujii, Y., Goto, H., Watanabe, T., Yoshida, T. & Kawaoka, Y. ( 2003; ). Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A 100, 2002–2007.[CrossRef]
    [Google Scholar]
  17. Fujii, K., Fujii, Y., Noda, T., Muramoto, Y., Watanabe, T., Takada, A., Goto, H., Horimoto, T. & Kawaoka, Y. ( 2005; ). Importance of both the coding and the segment-specific noncoding regions of the influenza A virus NS segment for its efficient incorporation into virions. J Virol 79, 3766–3774.[CrossRef]
    [Google Scholar]
  18. Gerrard, S. R., Li, L., Barrett, A. D. & Nichol, S. T. ( 2004; ). Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. J Virol 78, 8922–8926.[CrossRef]
    [Google Scholar]
  19. Kohl, A., Clayton, R. F., Weber, F., Bridgen, A., Randall, R. E. & Elliott, R. M. ( 2003; ). Bunyamwera virus nonstructural protein NSs counteracts interferon regulatory factor 3-mediated induction of early cell death. J Virol 77, 7999–8008.[CrossRef]
    [Google Scholar]
  20. Kohl, A., Dunn, E. F., Lowen, A. C. & Elliott, R. M. ( 2004a; ). Complementarity, sequence and structural elements within the 3′ and 5′ non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength. J Gen Virol 85, 3269–3278.[CrossRef]
    [Google Scholar]
  21. Kohl, A., Hart, T. J., Noonan, C., Royall, E., Roberts, L. O. & Elliott, R. M. ( 2004b; ). A Bunyamwera virus minireplicon system in mosquito cells. J Virol 78, 5679–5685.[CrossRef]
    [Google Scholar]
  22. Lopez, N., Muller, R., Prehaud, C. & Bouloy, M. ( 1995; ). The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69, 3972–3979.
    [Google Scholar]
  23. Lowen, A. C., Boyd, A., Fazakerley, J. K. & Elliott, R. M. ( 2005; ). Attenuation of bunyavirus replication by rearrangement of viral coding and noncoding sequences. J Virol 79, 6940–6946.[CrossRef]
    [Google Scholar]
  24. Osborne, J. C. & Elliott, R. M. ( 2000; ). RNA binding properties of Bunyamwera virus nucleocapsid protein and selective binding to an element in the 5′ terminus of the negative-sense S segment. J Virol 74, 9946–9952.[CrossRef]
    [Google Scholar]
  25. Schmaljohn, C. S. & Hooper, J. W. ( 2001; ). Bunyaviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 1581–1602. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  26. Shi, X. & Elliott, R. M. ( 2002; ). Golgi localization of Hantaan virus glycoproteins requires coexpression of G1 and G2. Virology 300, 31–38.[CrossRef]
    [Google Scholar]
  27. Shi, X., Lappin, D. F. & Elliott, R. M. ( 2004; ). Mapping the Golgi targeting and retention signal of Bunyamwera virus glycoproteins. J Virol 78, 10793–10802.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  29. Watanabe, T., Watanabe, S., Noda, T., Fujii, Y. & Kawaoka, Y. ( 2003; ). Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J Virol 77, 10575–10583.[CrossRef]
    [Google Scholar]
  30. Watret, G. E., Pringle, C. R. & Elliott, R. M. ( 1985; ). Synthesis of bunyavirus-specific proteins in a continuous cell line (XTC-2) derived from Xenopus laevis. J Gen Virol 66, 473–482.[CrossRef]
    [Google Scholar]
  31. Weber, F., Dunn, E. F., Bridgen, A. & Elliott, R. M. ( 2001; ). The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281, 67–74.[CrossRef]
    [Google Scholar]
  32. Zuker, M., Jaeger, J. A. & Turner, D. H. ( 1991; ). A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19, 2707–2714.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81227-0
Loading
/content/journal/jgv/10.1099/vir.0.81227-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error