1887

Abstract

Antigenic mapping of the haemagglutinin (HA) molecule of H5 and H9 influenza viruses by selecting escape mutants with monoclonal anti-HA antibodies and subjecting the selected viruses to immunological analysis and sequencing has previously been performed. The viruses used as wild-type strains were mouse-adapted variants of the original H5 and H9 isolates. Phenotypic characterization of the escape mutants revealed that the amino acid change in HA that conferred resistance to a monoclonal antibody was sometimes associated with additional effects, including decreased virulence for mice. In the present study, the low-virulence H5 and H9 escape mutants were readapted to mice. Analysis of the readapted variants revealed that the reacquisition of virulence was not necessarily achieved by reacquisition of the wild-type HA gene sequence, but was also associated either with the removal of a glycosylation site (the one acquired previously by the escape mutant) without the exact restoration of the initial wild-type amino acid sequence, or, for an H5 escape mutant that had no newly acquired glycosylation sites, with an additional amino acid change in a remote part of the HA molecule. The data suggest that such ‘compensating’ mutations, removing the damaging effects of antibody-selected amino acid changes, may be important in the course of influenza virus evolution.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81185-0
2005-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2831.html?itemId=/content/journal/jgv/10.1099/vir.0.81185-0&mimeType=html&fmt=ahah

References

  1. Bovin N. V., Korchagina E. Yu., Zemlyanukhina T. V., Byramova N. E., Galanina O. E., Zemlyakov A. E., Ivanov A. E., Zubov V. P., Mochalova L. V. 1993; Synthesis of polymeric neoglycoconjugates based on N -substituted polyacrylamides. Glycoconj J 10:142–151 [CrossRef]
    [Google Scholar]
  2. Brown E. G. 1990; Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genomic segments 4, 5, 7, and 8. J Virol 64:4523–4533
    [Google Scholar]
  3. CDC 1998; Update: isolation of avian influenza A(H5N1) viruses from humans – Hong Kong, 1997–1998. MMWR Morb Mortal Wkly Rep 46:1245–1247
    [Google Scholar]
  4. Daniels P. S., Jeffries S., Yates P. 7 other authors 1987; The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J 6:1459–1465
    [Google Scholar]
  5. Gitelman A. K., Kaverin N. V., Kharitonenkov I. G., Rudneva I. A., Sklyanskaya E. I., Zhdanov V. M. 1986; Dissociation of the haemagglutination inhibition and the infectivity neutralization in the reactions of influenza A/USSR/90/77 (H1N1) virus variants with monoclonal antibodies. J Gen Virol 67:2247–2251 [CrossRef]
    [Google Scholar]
  6. Guan Y., Poon L. L. M., Cheung C. Y. 10 other authors 2004; H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 101:8156–8161 [CrossRef]
    [Google Scholar]
  7. Guo Y., Li J., Cheng X. 1999; Discovery of men infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13:105–108 (in Chinese)
    [Google Scholar]
  8. Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001; Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842 [CrossRef]
    [Google Scholar]
  9. Hoffmann E., Stech J., Guan Y., Webster R. G., Perez D. R. 2001; Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289 [CrossRef]
    [Google Scholar]
  10. Hulse D. J., Webster R. G., Russell R. J., Perez D. R. 2004; Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. J Virol 78:9954–9964 [CrossRef]
    [Google Scholar]
  11. Ilyushina N. A., Rudneva I. A., Gambaryan A. S., Tuzikov A. B., Bovin N. V. 2004a; Receptor specificity of H5 influenza virus escape mutants. Virus Res 100:237–241 [CrossRef]
    [Google Scholar]
  12. Ilyushina N. A., Rudneva I. A., Gambaryan A. S., Kaverin N. V. 2004b; Changes in the affinity of the hemagglutinin to sialic receptors in the H5 and H9 influenza virus escape mutants. In Options for the Control of Influenza V , International Congress Series Vol 1263 pp  773–776 Edited by Kawaoka Y. Amsterdam: Elsevier;
    [Google Scholar]
  13. Ilyushina N., Rudneva I., Gambaryan A., Bovin N., Kaverin N. 2004c; Monoclonal antibodies differentially affect the interaction between the hemagglutinin of H9 influenza virus escape mutants and sialic receptors. Virology 329:33–39 [CrossRef]
    [Google Scholar]
  14. Kaverin N. V., Rudneva I. A., Ilyushina N. A. 7 other authors 2002; Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83:2497–2505
    [Google Scholar]
  15. Kaverin N. V., Rudneva I. A., Ilyushina N. A., Lipatov A. S., Krauss S., Webster R. G. 2004; Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol 78:240–249 [CrossRef]
    [Google Scholar]
  16. Kohler G., Milstein C. 1976; Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol 6:511–519 [CrossRef]
    [Google Scholar]
  17. Kuge S., Kawamura N., Nomoto A. 1989; Strong inclination toward transition mutation in nucleotide substitutions by poliovirus replicase. J Mol Biol 207:175–182 [CrossRef]
    [Google Scholar]
  18. Matrosovich M. N., Zhou N., Kawaoka Y., Webster R. 1999; The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155
    [Google Scholar]
  19. Matrosovich M. N., Krauss S., Webster R. G. 2001; H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156–162 [CrossRef]
    [Google Scholar]
  20. Mochalova L., Gambaryan A., Romanova J., Tuzikov A., Chinarev A., Katinger D., Katinger H., Egorov A., Bovin N. 2003; Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology 313:473–480 [CrossRef]
    [Google Scholar]
  21. Palmer D. F., Dowdle W. R., Coleman M. T., Schild G. C. 1975 Advanced Laboratory Techniques for Influenza Diagnosis Immunology Series No. 6 Atlanta, GA: Centers for Disease Control, US Department of Health, Education and Welfare;
    [Google Scholar]
  22. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L. S., Lai R. W. M., Orr W. K., Shortridge K. F. 1999; Human infection with influenza H9N2. Lancet 354:916–917 [CrossRef]
    [Google Scholar]
  23. Philpott M., Easterday B. C., Hinshaw V. S. 1989; Neutralizing epitopes of the H5 hemagglutinin from a virulent avian influenza virus and their relationship to pathogenicity. J Virol 63:3453–3458
    [Google Scholar]
  24. Philpott M., Hioe C., Sheerar M., Hinshaw V. S. 1990; Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. J Virol 64:2941–2947
    [Google Scholar]
  25. Reading P. C., Morey L. S., Crouch E. C., Anders E. M. 1997; Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol 71:8204–8212
    [Google Scholar]
  26. Reed L. J., Muench H. 1938; A simple method for estimating 50 % endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  27. Sanchez G., Bosch A., Gomes-Mariano G., Domingo F., Pinto R. M. 2003; Evidence for quasispecies distributions in the human hepatitis A virus genome. Virology 315:34–42 [CrossRef]
    [Google Scholar]
  28. Smirnov Y. A., Lipatov A. S., Van Beek R., Gitelman A. K., Osterhaus A. D., Claas E. C. 2000; Characterization of adaptation of an avian influenza A (H5N2) virus to a mammalian host. Acta Virol 44:1–8
    [Google Scholar]
  29. Speller S. A., Sangar D. V., Clarke B. F., Rowlands D. J. 1993; The nature and spatial distribution of amino acid substitutions conferring resistance to neutralizing monoclonal antibodies in human rhinovirus type 2. J Gen Virol 74:193–200 [CrossRef]
    [Google Scholar]
  30. Sturm-Ramirez K. M., Ellis T., Bousfield B. 7 other authors 2004; Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol 78:4892–4901 [CrossRef]
    [Google Scholar]
  31. Tsuchiya E., Sugawara K., Hongo S., Matsuzaki Y., Muraki Y., Li Z.-N., Nakamura K. 2002; Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus haemagglutinin on the intracellular transport and biological activities of the molecule. J Gen Virol 83:1137–1146
    [Google Scholar]
  32. Tuzikov A. B., Gambaryan A. S., Juneja L. R., Bovin N. V. 2000; Conversion of complex sialooligosaccharides into polymeric conjugates and their anti-influenza virus inhibitory potency. J Carbohydr Chem 19:1191–1200 [CrossRef]
    [Google Scholar]
  33. Webby R. J., Perez D. R., Coleman J. S. 8 other authors 2004; Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363:1099–1103 [CrossRef]
    [Google Scholar]
  34. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. 1988; Structure of the influenza virus hemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431 [CrossRef]
    [Google Scholar]
  35. WHO 2005; Outbreak news. Wkly Epidemiol Rec 80:233–240
    [Google Scholar]
  36. Wuethrich B. 2003; Infectious disease. An avian flu jumps to people. Science 299:1504 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81185-0
Loading
/content/journal/jgv/10.1099/vir.0.81185-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error