1887

Abstract

The majority of infections initiate their departure from a mucosal surface, such as (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against . The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81181-0
2005-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/2925.html?itemId=/content/journal/jgv/10.1099/vir.0.81181-0&mimeType=html&fmt=ahah

References

  1. Amara, R. R., Villinger, F., Altman, J. D. & 19 other authors ( 2001; ). Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74.[CrossRef]
    [Google Scholar]
  2. Belyakov, I. M., Derby, M. A., Ahlers, J. D., Kelsall, B. L., Earl, P., Moss, B., Strober, W. & Berzofsky, J. A. ( 1998a; ). Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc Natl Acad Sci U S A 95, 1709–1714.[CrossRef]
    [Google Scholar]
  3. Belyakov, I. M., Wyatt, L. S., Ahlers, J. D., Earl, P., Pendleton, C. D., Kelsall, B. L., Strober, W., Moss, B. & Berzofsky, J. A. ( 1998b; ). Induction of a mucosal cytotoxic T-lymphocyte response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing human immunodeficiency virus 89.6 envelope protein. J Virol 72, 8264–8272.
    [Google Scholar]
  4. Belyakov, I. M., Moss, B., Strober, W. & Berzofsky, J. A. ( 1999; ). Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc Natl Acad Sci U S A 96, 4512–4517.[CrossRef]
    [Google Scholar]
  5. Bender, B. S., Rowe, C. A., Taylor, S. F., Wyatt, L. S., Moss, B. & Small, P. A., Jr ( 1996; ). Oral immunization with a replication-deficient recombinant vaccinia virus protects mice against influenza. J Virol 70, 6418–6424.
    [Google Scholar]
  6. Bergquist, C., Johansson, E. L., Lagergard, T., Holmgren, J. & Rudin, A. ( 1997; ). Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect Immun 65, 2676–2684.
    [Google Scholar]
  7. Bertley, F. M., Kozlowski, P. A., Wang, S. W. & 8 other authors ( 2004; ). Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. J Immunol 172, 3745–3757.[CrossRef]
    [Google Scholar]
  8. Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P. L., Murphy, B. R., Subbarao, K. & Moss, B. ( 2004; ). Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101, 6641–6646.[CrossRef]
    [Google Scholar]
  9. Blanchard, T. J., Alcami, A., Andrea, P. & Smith, G. L. ( 1998; ). Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79, 1159–1167.
    [Google Scholar]
  10. Blaney, J. E., Jr, Nobusawa, E., Brehm, M. A., Bonneau, R. H., Mylin, L. M., Fu, T. M., Kawaoka, Y. & Tevethia, S. S. ( 1998; ). Immunization with a single major histocompatibility complex class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J Virol 72, 9567–9574.
    [Google Scholar]
  11. Brenchley, J. M., Schacker, T. W., Ruff, L. E. & 8 other authors ( 2004; ). CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200, 749–759.[CrossRef]
    [Google Scholar]
  12. Broyles, S. S. ( 2003; ). Vaccinia virus transcription. J Gen Virol 84, 2293–2303.[CrossRef]
    [Google Scholar]
  13. Caley, I. J., Betts, M. R., Irlbeck, D. M., Davis, N. L., Swanstrom, R., Frelinger, J. A. & Johnston, R. E. ( 1997; ). Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71, 3031–3038.
    [Google Scholar]
  14. Chakrabarti, S., Sisler, J. R. & Moss, B. ( 1997; ). Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094–1097.
    [Google Scholar]
  15. Cripps, A. W., Kyd, J. M. & Foxwell, A. R. ( 2001; ). Vaccines and mucosal immunisation. Vaccine 19, 2513–2515.[CrossRef]
    [Google Scholar]
  16. Drexler, I., Staib, C. & Sutter, G. ( 2004; ). Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr Opin Biotechnol 15, 506–512.[CrossRef]
    [Google Scholar]
  17. Durbin, A. P., Wyatt, L. S., Siew, J., Moss, B. & Murphy, B. R. ( 1998; ). The immunogenicity and efficacy of intranasally or parenterally administered replication-deficient vaccinia-parainfluenza virus type 3 recombinants in rhesus monkeys. Vaccine 16, 1324–1330.[CrossRef]
    [Google Scholar]
  18. Eo, S. K., Gierynska, M., Kamar, A. A. & Rouse, B. T. ( 2001; ). Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J Immunol 166, 5473–5479.[CrossRef]
    [Google Scholar]
  19. Eriksson, K. & Holmgren, J. ( 2002; ). Recent advances in mucosal vaccines and adjuvants. Curr Opin Immunol 14, 666–672.[CrossRef]
    [Google Scholar]
  20. Esposito, J. J. & Fenner, F. ( 2001; ). Poxviruses. In Fields Virology, 2nd edn, pp. 2885–2921.
  21. Estcourt, M. J., Ramsay, A. J., Brooks, A., Thomson, S. A., Medveckzy, C. J. & Ramshaw, I. A. ( 2002; ). Prime-boost immunization generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. Int Immunol 14, 31–37.[CrossRef]
    [Google Scholar]
  22. Evans, D. T., Chen, L. M., Gillis, J. & 9 other authors ( 2003; ). Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol 77, 2400–2409.[CrossRef]
    [Google Scholar]
  23. Ferko, B., Katinger, D., Grassauer, A., Egorov, A., Romanova, J., Niebler, B., Katinger, H. & Muster, T. ( 1998; ). Chimeric influenza virus replicating predominantly in the murine upper respiratory tract induces local immune responses against human immunodeficiency virus type 1 in the genital tract. J Infect Dis 178, 1359–1368.[CrossRef]
    [Google Scholar]
  24. Ferko, B., Stasakova, J., Sereinig, S., Romanova, J., Katinger, D., Niebler, B., Katinger, H. & Egorov, A. ( 2001; ). Hyperattenuated recombinant influenza A virus nonstructural-protein-encoding vectors induce human immunodeficiency virus type 1 Nef-specific systemic and mucosal immune responses in mice. J Virol 75, 8899–8908.[CrossRef]
    [Google Scholar]
  25. Gallego-Gomez, J. C., Risco, C., Rodriguez, D., Cabezas, P., Guerra, S., Carrascosa, J. L. & Esteban, M. ( 2003; ). Differences in virus-induced cell morphology and in virus maturation between MVA and other strains (WR, Ankara, and NYCBH) of vaccinia virus in infected human cells. J Virol 77, 10606–10622.[CrossRef]
    [Google Scholar]
  26. Gherardi, M. M. & Esteban, M. ( 1999; ). Mucosal and systemic immune responses induced after oral delivery of vaccinia virus recombinants. Vaccine 17, 1074–1083.[CrossRef]
    [Google Scholar]
  27. Gherardi, M. M., Ramirez, J. C., Rodriguez, D., Rodriguez, J. R., Sano, G., Zavala, F. & Esteban, M. ( 1999; ). IL-12 delivery from recombinant vaccinia virus attenuates the vector and enhances the cellular immune response against HIV-1 Env in a dose-dependent manner. J Immunol 162, 6724–6733.
    [Google Scholar]
  28. Gherardi, M. M., Ramirez, J. C. & Esteban, M. ( 2000; ). Interleukin-12 (IL-12) enhancement of the cellular immune response against human immunodeficiency virus type 1 env antigen in a DNA prime/vaccinia virus boost vaccine regimen is time and dose dependent: suppressive effects of IL-12 boost are mediated by nitric oxide. J Virol 74, 6278–6286.[CrossRef]
    [Google Scholar]
  29. Gherardi, M. M., Ramirez, J. C. & Esteban, M. ( 2001; ). Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime-booster vaccination regimens. Histol Histopathol 16, 655–667.
    [Google Scholar]
  30. Gherardi, M. M., Najera, J. L., Perez-Jimenez, E., Guerra, S., Garcia-Sastre, A. & Esteban, M. ( 2003; ). Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 77, 7048–7057.[CrossRef]
    [Google Scholar]
  31. Gherardi, M. M., Perez-Jimenez, E., Najera, J. L. & Esteban, M. ( 2004; ). Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization schedule. J Immunol 172, 6209–6220.[CrossRef]
    [Google Scholar]
  32. Giavedoni, L., Jones, L., Mebus, C. & Yilma, T. ( 1991; ). A vaccinia virus double recombinant expressing the F and H genes of rinderpest virus protects cattle against rinderpest and causes no pock lesions. Proc Natl Acad Sci U S A 88, 8011–8015.[CrossRef]
    [Google Scholar]
  33. Gomez-Roman, V. R. & Robert-Guroff, M. ( 2003; ). Adenoviruses as vectors for HIV vaccines. AIDS Rev 5, 178–185.
    [Google Scholar]
  34. Goonetilleke, N. P., McShane, H., Hannan, C. M., Anderson, R. J., Brookes, R. H. & Hill, A. V. ( 2003; ). Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol 171, 1602–1609.[CrossRef]
    [Google Scholar]
  35. Guimaraes-Walker, A., Mackie, N., McMichael, A. & 11 other authors ( 2004; ). Priming with a candidate HIV-1 clade A DNA vaccine followed by booster with HIV-1 clade A MVA vaccine in volunteers at low risk of infection. AIDS Vaccine 04, Lausane, Switzerland, August 2004, clinical trials communication no. 55, p. 32.
  36. Hanke, T. & McMichael, A. J. ( 2000; ). Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6, 951–955.[CrossRef]
    [Google Scholar]
  37. Hanke, T., McMichael, A. J., Dennis, M. J., Sharpe, S. A., Powell, L. A., McLoughlin, L. & Crome, S. J. ( 2005; ). Biodistribution and persistence of an MVA-vectored candidate HIV vaccine in SIV-infected rhesus macaques and SCID mice. Vaccine 23, 1507–1514.[CrossRef]
    [Google Scholar]
  38. Harari, A., Tapia, G., Medjitna-Rais, E. & 8 other authors ( 2004; ). Analysis of the immunogenicity of a pox-vector (NYVAC)-based vaccine expressing env, gag, pol and nef proteins of HIV-1 subtype C. AIDS Vaccine 04, Lausane, Switzerland, August 2004, clinical trials communication no. 51, p. 30.
  39. Harrington, P. R., Yount, B., Johnston, R. E., Davis, N., Moe, C. & Baric, R. S. ( 2002; ). Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J Virol 76, 730–742.[CrossRef]
    [Google Scholar]
  40. Hobson, P., Barnfield, C., Barnes, A. & Klavinskis, L. S. ( 2003; ). Mucosal immunization with DNA vaccines. Methods 31, 217–224.[CrossRef]
    [Google Scholar]
  41. Hochstein-Mintzel, V., Huber, H. C. & Stickl, H. ( 1972; ). Oral and nasal immunization with Poxvirus vacciniae. 3. Animal experiments. Zentralbl Bakteriol [Orig B] 156, 30–96.
    [Google Scholar]
  42. Hochstein-Mintzel, V., Hanichen, T., Huber, H. C. & Stickl, H. ( 1975; ). An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola (author's transl). Zentralbl Bakteriol [Orig A] 230, 283–297.
    [Google Scholar]
  43. Hochstein-Mintzel, V., Stickl, H. & Huber, H. C. ( 1976; ). Oral immunization against smallpox. Dev Biol Stand 33, 260–266.
    [Google Scholar]
  44. Holmgren, J. & Czerkinsky, C. ( 2005; ). Mucosal immunity and vaccines. Nat Med 11, S45–S53.[CrossRef]
    [Google Scholar]
  45. Holmgren, J., Czerkinsky, C., Eriksson, K. & Mharandi, A. ( 2003; ). Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21, S89–S95.[CrossRef]
    [Google Scholar]
  46. Issekutz, T. B. ( 1984; ). The response of gut-associated T lymphocytes to intestinal viral immunization. J Immunol 133, 2955–2960.
    [Google Scholar]
  47. Kanesaki, T., Murphy, B. R., Collins, P. L. & Ogra, P. L. ( 1991; ). Effectiveness of enteric immunization in the development of secretory immunoglobulin A response and the outcome of infection with respiratory syncytial virus. J Virol 65, 657–663.
    [Google Scholar]
  48. Kent, S. J., Zhao, A., Best, S. J., Chandler, J. D., Boyle, D. B. & Ramshaw, I. A. ( 1998; ). Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J Virol 72, 10180–10188.
    [Google Scholar]
  49. Kersten, G. & Hirschberg, H. ( 2004; ). Antigen delivery systems. Expert Rev Vaccines 3, 453–462.[CrossRef]
    [Google Scholar]
  50. Koprowski, H. ( 1989; ). Rabies oral immunization. Curr Top Microbiol Immunol 146, 137–151.
    [Google Scholar]
  51. Kozlowski, P. A., Williams, S. B., Lynch, R. M., Flanigan, T. P., Patterson, R. R., Cu-Uvin, S. & Neutra, M. R. ( 2002; ). Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol 169, 566–574.[CrossRef]
    [Google Scholar]
  52. Lane, J. M., Ruben, F. L., Neff, J. M. & Millar, J. D. ( 1969; ). Complications of smallpox vaccination, 1968. N Engl J Med 281, 1201–1208.[CrossRef]
    [Google Scholar]
  53. Legrand, F., Verardi, P. H., Chan, K. S., Peng, Y., Jones, L. A. & Yilma, T. D. ( 2005; ). Vaccinia viruses with a serpin gene deletion and expressing IFN-γ induce potent immune responses without detectable replication in vivo. Proc Natl Acad Sci U S A 102, 2940–2945.[CrossRef]
    [Google Scholar]
  54. Li, S., Rodrigues, M., Rodriguez, D., Rodriguez, J. R., Esteban, M., Palese, P., Nussenzweig, R. S. & Zavala, F. ( 1993; ). Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc Natl Acad Sci U S A 90, 5214–5218.[CrossRef]
    [Google Scholar]
  55. Makitalo, B., Lundholm, P., Hinkula, J. & 9 other authors ( 2004; ). Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen. J Gen Virol 85, 2407–2419.[CrossRef]
    [Google Scholar]
  56. McDermott, M. R. & Bienenstock, J. ( 1979; ). Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 122, 1892–1898.
    [Google Scholar]
  57. McFadden, G. ( 2005; ). Poxvirus tropism. Nat Rev Microbiol 3, 201–213.[CrossRef]
    [Google Scholar]
  58. McGhee, J. R., Mestecky, J., Elson, C. O. & Kiyono, H. ( 1989; ). Regulation of IgA synthesis and immune response by T cells and interleukins. J Clin Immunol 9, 175–199.[CrossRef]
    [Google Scholar]
  59. McShane, H. ( 2002; ). Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther 4, 23–27.
    [Google Scholar]
  60. Mehandru, S., Poles, M. A., Tenner-Racz, K., Horowitz, A., Hurley, A., Hogan, C., Boden, D., Racz, P. & Markowitz, M. ( 2004; ). Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200, 761–770.[CrossRef]
    [Google Scholar]
  61. Meitin, C. A., Bender, B. S. & Small, P. A., Jr ( 1994; ). Enteric immunization of mice against influenza with recombinant vaccinia. Proc Natl Acad Sci U S A 91, 11187–11191.[CrossRef]
    [Google Scholar]
  62. Mestecky, J. & Fultz, P. N. ( 1999; ). Mucosal immune system of the human genital tract. J Infect Dis 179, S470–S474.[CrossRef]
    [Google Scholar]
  63. Moss, B. ( 1996; ). Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93, 11341–11348.[CrossRef]
    [Google Scholar]
  64. Moss, B. ( 2001; ). Poxviridae: the viruses and their replication. In Fields Virology, 2nd edn, pp. 2849–2883.
  65. Moss, B., Smith, G. L., Gerin, J. L. & Purcell, R. H. ( 1984; ). Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature 311, 67–69.[CrossRef]
    [Google Scholar]
  66. Moss, B., Carroll, M. W., Wyatt, L. S. & 12 other authors ( 1996; ). Host range restricted, non-replicating vaccinia virus vectors as vaccine candidates. Adv Exp Med Biol 397, 7–13.
    [Google Scholar]
  67. Newman, M. J. ( 2002; ). Heterologous prime-boost vaccination strategies for HIV-1: augmenting cellular immune responses. Curr Opin Investig Drugs 3, 374–378.
    [Google Scholar]
  68. Ogra, P. L., Faden, H. & Welliver, R. C. ( 2001; ). Vaccination strategies for mucosal immune responses. Clin Microbiol Rev 14, 430–445.[CrossRef]
    [Google Scholar]
  69. Okuda, K., Ihata, A., Watabe, S. & 10 other authors ( 2001; ). Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene. Vaccine 19, 3681–3691.[CrossRef]
    [Google Scholar]
  70. Palese, P., Zavala, F., Muster, T., Nussenzweig, R. S. & Garcia-Sastre, A. ( 1997; ). Development of novel influenza virus vaccines and vectors. J Infect Dis 176, S45–S49.[CrossRef]
    [Google Scholar]
  71. Pizza, M., Giuliani, M. M., Fontana, M. R., Monaci, E., Douce, G., Dougan, G., Mills, K. H., Rappuoli, R. & Del Giudice, G. ( 2001; ). Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541.[CrossRef]
    [Google Scholar]
  72. Prevec, L., Schneider, M., Rosenthal, K. L., Belbeck, L. W., Derbyshire, J. B. & Graham, F. L. ( 1989; ). Use of human adenovirus-based vectors for antigen expression in animals. J Gen Virol 70, 429–434.[CrossRef]
    [Google Scholar]
  73. Ramirez, J. C., Finke, D., Esteban, M., Kraehenbuhl, J. P. & Acha-Orbea, H. ( 2003; ). Tissue distribution of the Ankara strain of vaccinia virus (MVA) after mucosal or systemic administration. Arch Virol 148, 827–839.[CrossRef]
    [Google Scholar]
  74. Ramsay, A. J., Leong, K. H. & Ramshaw, I. A. ( 1997; ). DNA vaccination against virus infection and enhancement of antiviral immunity following consecutive immunization with DNA and viral vectors. Immunol Cell Biol 75, 382–388.[CrossRef]
    [Google Scholar]
  75. Ramshaw, I. A. & Ramsay, A. J. ( 2000; ). The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today 21, 163–165.[CrossRef]
    [Google Scholar]
  76. Redfield, R. R., Wright, D. C., James, W. D., Jones, T. S., Brown, C. & Burke, D. S. ( 1987; ). Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease. N Engl J Med 316, 673–676.[CrossRef]
    [Google Scholar]
  77. Rodriguez, D., Rodriguez, J. R., Llorente, M., Vazquez, I., Lucas, P., Esteban, M., Martinez-A. C. & del Real, G. ( 1999; ). A human immunodeficiency virus type 1 Env-granulocyte-macrophage colony-stimulating factor fusion protein enhances the cellular immune response to Env in a vaccinia virus-based vaccine. J Gen Virol 80, 217–223.
    [Google Scholar]
  78. Rupprecht, C. E., Wiktor, T. J., Johnston, D. H., Hamir, A. N., Dietzschold, B., Wunner, W. H., Glickman, L. T. & Koprowski, H. ( 1986; ). Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc Natl Acad Sci U S A 83, 7947–7950.[CrossRef]
    [Google Scholar]
  79. Schneider, J., Gilbert, S. C., Hannan, C. M., Degano, P., Prieur, E., Sheu, E. G., Plebanski, M. & Hill, A. V. ( 1999; ). Induction of CD8+ T cells using heterologous prime-boost immunisation strategies. Immunol Rev 170, 29–38.[CrossRef]
    [Google Scholar]
  80. Singh, M., Vajdy, M., Gardner, J., Briones, M. & O'Hagan, D. ( 2001; ). Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine 20, 594–602.[CrossRef]
    [Google Scholar]
  81. Smith, G. L. ( 1999; ). Vaccinia virus immune evasion. Immunol Lett 65, 55–62.[CrossRef]
    [Google Scholar]
  82. Smith, G. L. & Moss, B. ( 1983; ). Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene 25, 21–28.[CrossRef]
    [Google Scholar]
  83. Smith, G. L., Murphy, B. R. & Moss, B. ( 1983; ). Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc Natl Acad Sci U S A 80, 7155–7159.[CrossRef]
    [Google Scholar]
  84. Smith, G. L., Symons, J. A., Khanna, A., Vanderplasschen, A. & Alcami, A. ( 1997; ). Vaccinia virus immune evasion. Immunol Rev 159, 137–154.[CrossRef]
    [Google Scholar]
  85. Staats, H. F., Bradney, C. P., Gwinn, W. M., Jackson, S. S., Sempowski, G. D., Liao, H. X., Letvin, N. L. & Haynes, B. F. ( 2001; ). Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J Immunol 167, 5386–5394.[CrossRef]
    [Google Scholar]
  86. Stevceva, L., Alvarez, X., Lackner, A. A., Tryniszewska, E., Kelsall, B., Nacsa, J., Tartaglia, J., Strober, W. & Franchini, G. ( 2002; ). Both mucosal and systemic routes of immunization with the live, attenuated NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result in gag-specific CD8+ T-cell responses in mucosal tissues of macaques. J Virol 76, 11659–11676.[CrossRef]
    [Google Scholar]
  87. Sutter, G. & Moss, B. ( 1992; ). Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89, 10847–10851.[CrossRef]
    [Google Scholar]
  88. Sutter, G. & Staib, C. ( 2003; ). Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr Drug Targets Infect Disord 3, 263–271.[CrossRef]
    [Google Scholar]
  89. Tartaglia, J., Perkus, M. E., Taylor, J. & 9 other authors ( 1992; ). NYVAC: a highly attenuated strain of vaccinia virus. Virology 188, 217–232.[CrossRef]
    [Google Scholar]
  90. Taylor, J., Weinberg, R., Tartaglia, J., Richardson, C., Alkhatib, G., Briedis, D., Appel, M., Norton, E. & Paoletti, E. ( 1992; ). Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virology 187, 321–328.[CrossRef]
    [Google Scholar]
  91. Taylor, J., Meignier, B., Tartaglia, J., Languet, B., VanderHoeven, J., Franchini, G., Trimarchi, C. & Paoletti, E. ( 1995; ). Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species. Vaccine 13, 539–549.[CrossRef]
    [Google Scholar]
  92. Toka, F. N., Pack, C. D. & Rouse, B. T. ( 2004; ). Molecular adjuvants for mucosal immunity. Immunol Rev 199, 100–112.[CrossRef]
    [Google Scholar]
  93. Tolson, N. D., Charlton, K. M., Stewart, R. B., Campbell, J. B. & Wiktor, T. J. ( 1987; ). Immune response in skunks to a vaccinia virus recombinant expressing the rabies virus glycoprotein. Can J Vet Res 51, 363–366.
    [Google Scholar]
  94. Veazey, R. S., DeMaria, M., Chalifoux, L. V. & 7 other authors ( 1998; ). Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431.[CrossRef]
    [Google Scholar]
  95. Voltan, R. & Robert-Guroff, M. ( 2003; ). Live recombinant vectors for AIDS vaccine development. Curr Mol Med 3, 273–284.[CrossRef]
    [Google Scholar]
  96. Vuola, J. M., Keating, S., Webster, D. P., Berthoud, T., Dunachie, S., Gilbert, S. C. & Hill, A. V. ( 2005; ). Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J Immunol 174, 449–455.[CrossRef]
    [Google Scholar]
  97. Wang, S. W., Bertley, F. M., Kozlowski, P. A. & 8 other authors ( 2004; ). An SHIV DNA/MVA rectal vaccination in macaques provides systemic and mucosal virus-specific responses and protection against AIDS. AIDS Res Hum Retroviruses 20, 846–859.[CrossRef]
    [Google Scholar]
  98. Welter, J., Taylor, J., Tartaglia, J., Paoletti, E. & Stephensen, C. B. ( 1999; ). Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection. Vaccine 17, 308–318.[CrossRef]
    [Google Scholar]
  99. Wierzbicki, A., Kiszka, I., Kaneko, H., Kmieciak, D., Wasik, T. J., Gzyl, J., Kaneko, Y. & Kozbor, D. ( 2002; ). Immunization strategies to augment oral vaccination with DNA and viral vectors expressing HIV envelope glycoprotein. Vaccine 20, 1295–1307.[CrossRef]
    [Google Scholar]
  100. Woodland, D. L. ( 2004; ). Jump-starting the immune system: prime-boosting comes of age. Trends Immunol 25, 98–104.[CrossRef]
    [Google Scholar]
  101. Wright, P. F., Mestecky, J., McElrath, M. J. & 12 other authors ( 2004; ). Comparison of systemic and mucosal delivery of 2 canarypox virus vaccines expressing either HIV-1 genes or the gene for rabies virus G protein. J Infect Dis 189, 1221–1231.[CrossRef]
    [Google Scholar]
  102. Wyatt, L. S., Shors, S. T., Murphy, B. R. & Moss, B. ( 1996; ). Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 14, 1451–1458.[CrossRef]
    [Google Scholar]
  103. Wyatt, L. S., Whitehead, S. S., Venanzi, K. A., Murphy, B. R. & Moss, B. ( 1999; ). Priming and boosting immunity to respiratory syncytial virus by recombinant replication-defective vaccinia virus MVA. Vaccine 18, 392–397.[CrossRef]
    [Google Scholar]
  104. Yuki, Y. & Kiyono, H. ( 2003; ). New generation of mucosal adjuvants for the induction of protective immunity. Rev Med Virol 13, 293–310.[CrossRef]
    [Google Scholar]
  105. Zavala, F., Rodrigues, M., Rodriguez, D., Rodriguez, J. R., Nussenzweig, R. S. & Esteban, M. ( 2001; ). A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8+ T cells. Virology 280, 155–159.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81181-0
Loading
/content/journal/jgv/10.1099/vir.0.81181-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error