1887

Abstract

(CCHFV), a member of the genus of the family , causes severe disease in humans with high rates of mortality. The virus has a tripartite genome composed of a small (S), a medium (M) and a large (L) RNA segment; the M segment encodes the two viral glycoproteins, G and G. Whilst relatively few full-length M segment sequences are available, it is apparent that both G and G may exhibit significant sequence diversity. It is unknown whether considerable antigenic differences exist between divergent CCHFV strains, or whether there are conserved neutralizing epitopes. The M segments derived from viral isolates of a human case of CCHF in South Africa (SPU 41/84), an infected tick () in South Africa (SPU 128/81), a human case in Congo (UG 3010), an infected individual in Uzbekistan (U2-2-002) and an infected tick () in China (Hy13) were sequenced fully, and the glycoproteins were expressed. These novel sequences showed high variability in the N-terminal region of G and more modest differences in the remainder of G and in G. Phylogenetic analyses placed these newly identified strains in three of the four previously described M segment groups. Studies with a panel of mAbs specific to G and G indicated that there were significant antigenic differences between the M segment groups, although several neutralizing epitopes in both G and G were conserved among all strains examined. Thus, the genetic diversity exhibited by CCHFV strains results in significant antigenic differences that will need to be taken into consideration for vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81175-0
2005-12-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/12/3327.html?itemId=/content/journal/jgv/10.1099/vir.0.81175-0&mimeType=html&fmt=ahah

References

  1. Alexander, W. A., Moss, B. & Fuerst, T. R. ( 1992; ). Regulated expression of foreign genes in vaccinia virus under the control of bacteriophage T7 RNA polymerase and the Escherichia coli lac repressor. J Virol 66, 2934–2942.
    [Google Scholar]
  2. Andersson, A. M. & Pettersson, R. F. ( 1998; ). Targeting of a short peptide derived from the cytoplasmic tail of the G1 membrane glycoprotein of Uukuniemi virus (Bunyaviridae) to the Golgi complex. J Virol 72, 9585–9596.
    [Google Scholar]
  3. Andersson, A. M., Melin, L., Bean, A. & Pettersson, R. F. ( 1997a; ). A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. J Virol 71, 4717–4727.
    [Google Scholar]
  4. Andersson, A. M., Melin, L., Persson, R., Raschperger, E., Wikström, L. & Pettersson, R. F. ( 1997b; ). Processing and membrane topology of the spike proteins G1 and G2 of Uukuniemi virus. J Virol 71, 218–225.
    [Google Scholar]
  5. Bertolotti-Ciarlet, A., Smith, J., Strecker, K. & 7 other authors ( 2005; ). Cellular localization and antigenic characterization of Crimean-Congo hemorrhagic fever virus glycoproteins. J Virol 79, 6152–6161.[CrossRef]
    [Google Scholar]
  6. Blackburn, N. K., Besselaar, T. G., Shepherd, A. J. & Swanepoel, R. ( 1987; ). Preparation and use of monoclonal antibodies for identifying Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg 37, 392–397.
    [Google Scholar]
  7. Chen, S.-Y. & Compans, R. W. ( 1991; ). Oligomerization, transport, and Golgi retention of Punta Toro virus glycoproteins. J Virol 65, 5902–5909.
    [Google Scholar]
  8. Chen, S.-Y., Matsuoka, Y. & Compans, R. W. ( 1991; ). Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology 183, 351–365.[CrossRef]
    [Google Scholar]
  9. Chinikar, S., Persson, S.-M., Johansson, M. & 7 other authors ( 2004; ). Genetic analysis of Crimean-Congo hemorrhagic fever virus in Iran. J Med Virol 73, 404–411.[CrossRef]
    [Google Scholar]
  10. Chumakov, M. P., Butenko, A. M., Shalunova, N. V. & 10 other authors ( 1968; ). New data on the viral agent of Crimean hemorrhagic fever. Vopr Virusol 13, 377 (in Russian).
    [Google Scholar]
  11. Chumakov, M. P., Smirnova, S. E. & Tkachenko, E. A. ( 1970; ). Relationship between strains of Crimean haemorrhagic fever and Congo viruses. Acta Virol 14, 82–85.
    [Google Scholar]
  12. Felsenstein, J. ( 1997; ). An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46, 101–111.[CrossRef]
    [Google Scholar]
  13. Gerrard, S. R. & Nichol, S. T. ( 2002; ). Characterization of the Golgi retention motif of Rift Valley fever virus GN glycoprotein. J Virol 76, 12200–12210.[CrossRef]
    [Google Scholar]
  14. Hewson, R., Chamberlain, J., Mioulet, V. & 9 other authors ( 2004a; ). Crimean-Congo haemorrhagic fever virus: sequence analysis of the small RNA segments from a collection of viruses world wide. Virus Res 102, 185–189.[CrossRef]
    [Google Scholar]
  15. Hewson, R., Gmyl, A., Gmyl, L., Smirnova, S. E., Karganova, G., Jamil, B., Hasan, R., Chamberlain, J. & Clegg, C. ( 2004b; ). Evidence of segment reassortment in Crimean-Congo haemorrhagic fever virus. J Gen Virol 85, 3059–3070.[CrossRef]
    [Google Scholar]
  16. Hoogstraal, H. ( 1979; ). The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15, 307–417.[CrossRef]
    [Google Scholar]
  17. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. ( 1998; ). Multiple sequence alignment with Clustal X. Trends Biochem Sci 23, 403–405.[CrossRef]
    [Google Scholar]
  18. Morais, V. A., Crystal, A. S., Pijak, D. S., Carlin, D., Costa, J., Lee, V. M.-Y. & Doms, R. W. ( 2003; ). The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the γ-secretase complex. J Biol Chem 278, 43284–43291.[CrossRef]
    [Google Scholar]
  19. Morikawa, S., Qing, T., Xinqin, Z., Saijo, M. & Kurane, I. ( 2002; ). Genetic diversity of the M RNA segment among Crimean-Congo hemorrhagic fever virus isolates in China. Virology 296, 159–164.[CrossRef]
    [Google Scholar]
  20. Niwa, H., Yamamura, K. & Miyazaki, J. ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.[CrossRef]
    [Google Scholar]
  21. Olaleye, O. D., Tomori, O. & Schmitz, H. ( 1996; ). Rift Valley fever in Nigeria: infections in domestic animals. Rev Sci Tech 15, 937–946.
    [Google Scholar]
  22. Onishchenko, G. G., Lomov, Iu. M., Markov, V. I. & 12 other authors ( 2000; ). The laboratory diagnosis of an outbreak of hemorrhagic fever at Oblivskaya village, Rostov Province: proof of the etiological role of the Crimean-Congo hemorrhagic fever virus. Zh Mikrobiol Epidemiol Immunobiol 32–36 (in Russian).
    [Google Scholar]
  23. Onishchenko, G. G., Efremenko, V. I., Kovalev, N. G. & 12 other authors ( 2001a; ). Specific epidemiologic features of Crimean haemorrhagic fever in Stavropol' region in 1999–2000. Zh Mikrobiol Epidemiol Immunobiol 86–89 (in Russian).
    [Google Scholar]
  24. Onishchenko, G. G., Markov, V. I., Merkulov, V. A., Vasil'ev, N. T., Berezhnoi, A. M., Androshchuk, I. A. & Maksimov, V. A. ( 2001b; ). Isolation and identification of Crimean-Congo hemorrhagic fever virus in the Stavropol territory. Zh Mikrobiol Epidemiol Immunobiol 7–11 (in Russian).
    [Google Scholar]
  25. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  26. Papa, A., Ma, B.-J., Kouidou, S., Tang, Q., Hang, C.-S. & Antoniadis, A. ( 2002; ). Genetic characterization of the M RNA segment of Crimean Congo hemorrhagic fever virus strains, China. Emerg Infect Dis 8, 50–53.[CrossRef]
    [Google Scholar]
  27. Sanchez, A. J., Vincent, M. J. & Nichol, S. T. ( 2002; ). Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76, 7263–7275.[CrossRef]
    [Google Scholar]
  28. Schmaljohn, C. S. ( 1996; ). Bunyaviridae: the viruses and their replication. In Fileds Virology, 3rd edn, pp. 1447–1471. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott-Raven.
  29. Shepherd, A. J., Swanepoel, R., Shepherd, S. P., Leman, P. A., Blackburn, N. K. & Hallett, A. F. ( 1985; ). A nosocomial outbreak of Crimean-Congo haemorrhagic fever at Tygerberg Hospital. Part V. Virological and serological observations. S Afr Med J 68, 733–736.
    [Google Scholar]
  30. Simmons, G., Wool-Lewis, R. J., Baribaud, F., Netter, R. C. & Bates, P. ( 2002; ). Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 76, 2518–2528.[CrossRef]
    [Google Scholar]
  31. Simpson, D. I., Knight, E. M., Courtois, G., Williams, M. C., Weinbren, M. P. & Kibukamusoke, J. W. ( 1967; ). Congo virus: a hitherto undescribed virus occurring in Africa. I. Human isolations – clinical notes. East Afr Med J 44, 86–92.
    [Google Scholar]
  32. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  33. Tignor, G. H., Smith, A. L., Casals, J., Ezeokoli, C. D. & Okoli, J. ( 1980; ). Close relationship of Crimean hemorrhagic fever-Congo (CHF-C) virus strains by neutralizing antibody assays. Am J Trop Med Hyg 29, 676–685.
    [Google Scholar]
  34. Tippmann, H.-F. ( 2004; ). Analysis for free: comparing programs for sequence analysis. Brief Bioinform 5, 82–87.[CrossRef]
    [Google Scholar]
  35. Vassilenko, S. M., Vassilev, T. L., Bozadjiev, L. G., Bineva, I. L. & Kazarov, G. Z. ( 1990; ). Specific intravenous immunoglobulin for Crimean-Congo haemorrhagic fever. Lancet 335, 791–792.
    [Google Scholar]
  36. Vincent, M. J., Sanchez, A. J., Erickson, B. R., Basak, A., Chretien, M., Seidah, N. G. & Nichol, S. T. ( 2003; ). Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol 77, 8640–8649.[CrossRef]
    [Google Scholar]
  37. Whitehouse, C. A. ( 2004; ). Crimean–Congo hemorrhagic fever. Antiviral Res 64, 145–160.[CrossRef]
    [Google Scholar]
  38. Williams, R. J., Al-Busaidy, S., Mehta, F. R. & 7 other authors ( 2000; ). Crimean-Congo haemorrhagic fever: a seroepidemiological and tick survey in the Sultanate of Oman. Trop Med Int Health 5, 99–106.[CrossRef]
    [Google Scholar]
  39. Wood, O. L., Lee, V. H., Ash, J. S. & Casals, J. ( 1978; ). Crimean-Congo hemorrhagic fever, Thogoto, Dugbe, and Jos viruses isolated from ixodid ticks in Ethiopia. Am J Trop Med Hyg 27, 600–604.
    [Google Scholar]
  40. Woodall, J. P., Williams, M. C. & Simpson, D. I. ( 1967; ). Congo virus: a hitherto undescribed virus occurring in Africa. II. Identification studies. East Afr Med J 44, 93–98.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81175-0
Loading
/content/journal/jgv/10.1099/vir.0.81175-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3327 – 3336

Transfected HeLa cells expressing CCHFV glycoproteins from different virus strains

Western blotting using lysates of HEK-293T cells transfected with pCAGGS clones expressing M segments from different CCHFV strains

Transfected HeLa cells expressing CCHFV glycoproteins from virus strain IbAr10200

[ Single PDF file] (598 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error