1887

Abstract

The maturation of the core protein (C) of (HCV) is controlled by the signal peptidase (sp) and signal peptide peptidase (spp) of the host. To date, it remains unknown whether spp cleavage influences viral infectivity and/or the assembly process. Here, evidence is provided that cleavage by spp is not required for assembly of nucleocapsid-like particles (NLPs) in yeast (). The immature NLPs (not processed by spp) show a density of 1·11 g ml on sucrose gradients and a diameter of 50 nm. Co-expression of human spp (hspp) with C generates the 21 kDa mature form of the protein and promotes the accumulation of non-enveloped particles. The amount of non-enveloped particles accumulating in the cell was correlated directly with the expression level of hspp. Furthermore, immunocapture studies showed that hspp was embedded in the membranes of enveloped particles. These results suggest that maturation of the C protein can occur after formation of the enveloped particles and that the abundance of hspp influences the types of particle accumulating in the cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81174-0
2005-11-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3055.html?itemId=/content/journal/jgv/10.1099/vir.0.81174-0&mimeType=html&fmt=ahah

References

  1. Acosta-Rivero, N., Aguilar, J. C., Musacchio, A., Falcón, V., Viña, A., de la Rosa, M. C. & Morales, J. ( 2001; ). Characterization of the HCV core virus-like particles produced in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 287, 122–125.[CrossRef]
    [Google Scholar]
  2. Acosta-Rivero, N., Musacchio, A., Lorenzo, L., Alvarez, C. & Morales, J. ( 2002; ). Processing of the hepatitis C virus precursor protein expressed in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 295, 81–84.[CrossRef]
    [Google Scholar]
  3. Acosta-Rivero, N., Falcón, V., Alvarez, C. & 12 other authors ( 2003; ). Structured HCV nucleocapsids composed of P21 core protein assemble primary in the nucleus of Pichia pastoris yeast. Biochem Biophys Res Commun 310, 48–53.[CrossRef]
    [Google Scholar]
  4. Alejo, A., Andrés, G. & Salas, M. L. ( 2003; ). African swine fever virus proteinase is essential for core maturation and infectivity. J Virol 77, 5571–5577.[CrossRef]
    [Google Scholar]
  5. André, P., Komurian-Pradel, F., Deforges, S. & 7 other authors ( 2002; ). Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76, 6919–6928.[CrossRef]
    [Google Scholar]
  6. Andrés, G., Alejo, A., Simón-Mateo, C. & Salas, M. L. ( 2001; ). African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J Biol Chem 276, 780–787.[CrossRef]
    [Google Scholar]
  7. Barba, G., Harper, F., Harada, T. & 8 other authors ( 1997; ). Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci U S A 94, 1200–1205.[CrossRef]
    [Google Scholar]
  8. Baumert, T. F., Ito, S., Wong, D. T. & Liang, T. J. ( 1998; ). Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72, 3827–3836.
    [Google Scholar]
  9. Blanchard, E., Brand, D., Trassard, S., Goudeau, A. & Roingeard, P. ( 2002; ). Hepatitis C virus-like particle morphogenesis. J Virol 76, 4073–4079.[CrossRef]
    [Google Scholar]
  10. Bland, F. A., Lemberg, M. K., McMichael, A. J., Martoglio, B. & Braud, V. M. ( 2003; ). Requirement of the proteasome for the trimming of signal peptide-derived epitopes presented by the nonclassical major histocompatibility complex class I molecule HLA-E. J Biol Chem 278, 33747–33752.[CrossRef]
    [Google Scholar]
  11. Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. M. & Houghton, M. ( 1989; ). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362.[CrossRef]
    [Google Scholar]
  12. Choo, S.-H., So, H.-S., Cho, J. M. & Ryu, W.-S. ( 1995; ). Association of hepatitis C virus particles with immunoglobulin: a mechanism for persistent infection. J Gen Virol 76, 2337–2341.[CrossRef]
    [Google Scholar]
  13. Dubuisson, J., Penin, F. & Moradpour, D. ( 2002; ). Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol 12, 517–523.[CrossRef]
    [Google Scholar]
  14. Ezelle, H. J., Markovic, D. & Barber, G. N. ( 2002; ). Generation of hepatitis C virus-like particles by use of a recombinant vesicular stomatitis virus vector. J Virol 76, 12325–12334.[CrossRef]
    [Google Scholar]
  15. Falcón, V., García, C., de la Rosa, M. C., Menéndez, I., Seoane, J. & Grillo, J. M. ( 1999; ). Ultrastructural and immunocytochemical evidences of core-particle formation in the methylotrophic Pichia pastoris yeast when expressing HCV structural proteins (core-E1). Tissue Cell 31, 117–125.[CrossRef]
    [Google Scholar]
  16. Falcón, V., Acosta-Rivero, N., Chinea, G. & 12 other authors ( 2003; ). Ultrastructural evidences of HCV infection in hepatocytes of chronically HCV-infected patients. Biochem Biophys Res Commun 305, 1085–1090.[CrossRef]
    [Google Scholar]
  17. Golde, T. E. & Younkin, S. G. ( 2001; ). Presenilins as therapeutic targets for the treatment of Alzheimer's disease. Trends Mol Med 7, 264–269.[CrossRef]
    [Google Scholar]
  18. Greber, U. F., Webster, P., Weber, J. & Helenius, A. ( 1996; ). The role of the adenovirus protease in virus entry into cells. EMBO J 15, 1766–1777.
    [Google Scholar]
  19. Greive, S. J., Webb, R. I., Mackenzie, J. M. & Gowans, E. J. ( 2002; ). Expression of the hepatitis C virus structural proteins in mammalian cells induces morphology similar to that in natural infection. J Viral Hepat 9, 9–17.[CrossRef]
    [Google Scholar]
  20. Hiasa, Y., Takahashi, H., Shimizu, M., Nuriya, H., Tsukiyama-Kohara, K., Tanaka, T., Horiike, N., Onji, M. & Kohara, M. ( 2004; ). Major histocompatibility complex class-I presentation impaired in transgenic mice expressing hepatitis C virus structural proteins during dendritic cell maturation. J Med Virol 74, 253–261.[CrossRef]
    [Google Scholar]
  21. Hijikata, M., Shimizu, Y., Kato, H., Iwamoto, A., Shih, J. W., Alter, H. J., Purcell, R. H. & Yoshikura, H. ( 1993; ). Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. J Virol 67, 1953–1958.
    [Google Scholar]
  22. Hüssy, P., Langen, H., Mous, J. & Jacobsen, H. ( 1996; ). Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224, 93–104.[CrossRef]
    [Google Scholar]
  23. Ishida, S., Kaito, M., Kohara, M., Tsukiyama-Kohora, K., Fujita, N., Ikoma, J., Adachi, Y. & Watanabe, S. ( 2001; ). Hepatitis C virus core particle detected by immunoelectron microscopy and optical rotation technique. Hepatol Res 20, 335–347.[CrossRef]
    [Google Scholar]
  24. Kaito, M., Watanabe, S., Tsukiyama-Kohara, K. & 7 other authors ( 1994; ). Hepatitis C virus particle detected by immunoelectron microscopic study. J Gen Virol 75, 1755–1760.[CrossRef]
    [Google Scholar]
  25. Kanto, T., Hayashi, N., Takehara, T., Hagiwara, H., Mita, E., Naito, M., Kasahara, A., Fusamoto, H. & Kamada, T. ( 1994; ). Buoyant density of hepatitis C virus recovered from infected hosts: two different features in sucrose equilibrium density-gradient centrifugation related to degree of liver inflammation. Hepatology 19, 296–302.[CrossRef]
    [Google Scholar]
  26. Kanto, T., Hayashi, N., Takehara, T., Hagiwara, H., Mita, E., Naito, M., Kasahara, A., Fusamoto, H. & Kamada, T. ( 1995; ). Density analysis of hepatitis C virus particle population in the circulation of infected hosts: implications for virus neutralization or persistence. J Hepatol 22, 440–448.[CrossRef]
    [Google Scholar]
  27. Kato, T., Miyamoto, M., Furusaka, A., Date, T., Yasui, K., Kato, J., Matsushima, S., Komatsu, T. & Wakita, T. ( 2003; ). Processing of hepatitis C virus core protein is regulated by its C-terminal sequence. J Med Virol 69, 357–366.[CrossRef]
    [Google Scholar]
  28. Kiernan, R. E., Ono, A., Englund, G. & Freed, E. O. ( 1998; ). Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle. J Virol 72, 4116–4126.
    [Google Scholar]
  29. Kunkel, M., Lorinczi, M., Rijnbrand, R., Lemon, S. M. & Watowich, S. J. ( 2001; ). Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J Virol 75, 2119–2129.[CrossRef]
    [Google Scholar]
  30. Lauer, G. M. & Walker, B. D. ( 2001; ). Hepatitis C virus infection. N Engl J Med 345, 41–52.[CrossRef]
    [Google Scholar]
  31. Lee, T. C., Swartzendruber, D. C. & Snyder, F. ( 1969; ). Zonal centrifugation of microsomes from rat liver: resolution of rough- and smooth-surfaced membranes. Biochem Biophys Res Commun 36, 748–755.[CrossRef]
    [Google Scholar]
  32. Lemberg, M. K. & Martoglio, B. ( 2003; ). Analysis of polypeptides by sodium dodecyl sulfate–polyacrylamide gel electrophoresis alongside in vitro-generated reference peptides. Anal Biochem 319, 327–331.[CrossRef]
    [Google Scholar]
  33. Lin, C., Lindenbach, B. D., Prágai, B. M., McCourt, D. W. & Rice, C. M. ( 1994; ). Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini. J Virol 68, 5063–5073.
    [Google Scholar]
  34. Lorenzo, L. J., Dueñas-Carrera, S., Falcón, V., Acosta-Rivero, N., González, E., de la Rosa, M. C., Menéndez, I. & Morales, J. ( 2001; ). Assembly of truncated HCV core antigen into virus-like particles in Escherichia coli. Biochem Biophys Res Commun 281, 962–965.[CrossRef]
    [Google Scholar]
  35. Maillard, P., Krawczynski, K., Nitkiewicz, J. & 7 other authors ( 2001; ). Nonenveloped nucleocapsids of hepatitis C virus in the serum of infected patients. J Virol 75, 8240–8250.[CrossRef]
    [Google Scholar]
  36. Majeau, N., Gagné, V., Boivin, A., Bolduc, M., Majeau, J.-A., Ouellet, D. & Leclerc, D. ( 2004; ). The N-terminal half of the core protein of hepatitis C virus is sufficient for nucleocapsid formation. J Gen Virol 85, 971–981.[CrossRef]
    [Google Scholar]
  37. Martoglio, B. & Golde, T. E. ( 2003; ). Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs. Hum Mol Genet 12, R201–R206.[CrossRef]
    [Google Scholar]
  38. McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. ( 2002; ). Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21, 3980–3988.[CrossRef]
    [Google Scholar]
  39. Miyamoto, H., Okamoto, H., Sato, K., Tanaka, T. & Mishiro, S. ( 1992; ). Extraordinarily low density of hepatitis C virus estimated by sucrose density gradient centrifugation and the polymerase chain reaction. J Gen Virol 73, 715–718.[CrossRef]
    [Google Scholar]
  40. Moradpour, D., Brass, V., Gosert, R., Wölk, B. & Blum, H. E. ( 2002; ). Hepatitis C: molecular virology and antiviral targets. Trends Mol Med 8, 476–482.[CrossRef]
    [Google Scholar]
  41. Murphy, D. J. & Vance, J. ( 1999; ). Mechanisms of lipid-body formation. Trends Biochem Sci 24, 109–115.[CrossRef]
    [Google Scholar]
  42. Nyborg, A. C., Kornilova, A. Y., Jansen, K., Ladd, T. B., Wolfe, M. S. & Golde, T. E. ( 2004; ). Signal peptide peptidase forms a homodimer that is labeled by an active site-directed γ-secretase inhibitor. J Biol Chem 279, 15153–15160.[CrossRef]
    [Google Scholar]
  43. Ogino, T., Fukuda, H., Imajoh-Ohmi, S., Kohara, M. & Nomoto, A. ( 2004; ). Membrane binding properties and terminal residues of the mature hepatitis C virus capsid protein in insect cells. J Virol 78, 11766–11777.[CrossRef]
    [Google Scholar]
  44. Okamoto, K., Moriishi, K., Miyamura, T. & Matsuura, Y. ( 2004; ). Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol 78, 6370–6380.[CrossRef]
    [Google Scholar]
  45. Prince, A. M., Huima-Byron, T., Parker, T. S. & Levine, D. M. ( 1996; ). Visualization of hepatitis C virions and putative defective interfering particles isolated from low-density lipoproteins. J Viral Hepat 3, 11–17.[CrossRef]
    [Google Scholar]
  46. Roingeard, P., Hourioux, C., Blanchard, E., Brand, D. & Ait-Goughoulte, M. ( 2004; ). Hepatitis C virus ultrastructure and morphogenesis. Biol Cell 96, 103–108.[CrossRef]
    [Google Scholar]
  47. Rusiñol, A. E., Cui, Z., Chen, M. H. & Vance, J. E. ( 1994; ). A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269, 27494–27502.
    [Google Scholar]
  48. Sakuragi, S., Goto, T., Sano, K. & Morikawa, Y. ( 2002; ). HIV type 1 Gag virus-like particle budding from spheroplasts of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99, 7956–7961.[CrossRef]
    [Google Scholar]
  49. Santolini, E., Migliaccio, G. & La Monica, N. ( 1994; ). Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68, 3631–3641.
    [Google Scholar]
  50. Schwartz, M., Chen, J., Lee, W.-M., Janda, M. & Ahlquist, P. ( 2004; ). Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc Natl Acad Sci U S A 101, 11263–11268.[CrossRef]
    [Google Scholar]
  51. Schwer, B., Ren, S., Pietschmann, T., Kartenbeck, J., Kaehlcke, K., Bartenschlager, R., Yen, T. S. B. & Ott, M. ( 2004; ). Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol 78, 7958–7968.[CrossRef]
    [Google Scholar]
  52. Suzuki, R., Tamura, K., Li, J., Ishii, K., Matsuura, Y., Miyamura, T. & Suzuki, T. ( 2001; ). Ubiquitin-mediated degradation of hepatitis C virus core protein is regulated by processing at its carboxyl terminus. Virology 280, 301–309.[CrossRef]
    [Google Scholar]
  53. Thomssen, R. & Bonk, S. ( 2002; ). Virolytic action of lipoprotein lipase on hepatitis C virus in human sera. Med Microbiol Immunol (Berl) 191, 17–24.[CrossRef]
    [Google Scholar]
  54. Walworth, N. C., Goud, B., Ruohola, H. & Novick, P. J. ( 1989; ). Fractionation of yeast organelles. Methods Cell Biol 31, 335–356.
    [Google Scholar]
  55. Watson, J. P., Bevitt, D. J., Spickett, G. P., Toms, G. L. & Bassendine, M. F. ( 1996; ). Hepatitis C virus density heterogeneity and viral titre in acute and chronic infection: a comparison of immunodeficient and immunocompetent patients. J Hepatol 25, 599–607.[CrossRef]
    [Google Scholar]
  56. Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K. & Martoglio, B. ( 2002; ). Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218.[CrossRef]
    [Google Scholar]
  57. Wu, C.-M. & Chang, M. D.-T. ( 2004; ). Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase. Biochem Biophys Res Commun 322, 585–592.[CrossRef]
    [Google Scholar]
  58. Yasui, K., Wakita, T., Tsukiyama-Kohara, K., Funahashi, S.-I., Ichikawa, M., Kajita, T., Moradpour, D., Wands, J. R. & Kohara, M. ( 1998; ). The native form and maturation process of hepatitis C virus core protein. J Virol 72, 6048–6055.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81174-0
Loading
/content/journal/jgv/10.1099/vir.0.81174-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error