1887

Abstract

The antiviral efficacy of ten antisense phosphorodiamidate morpholino oligomers (PMOs) directed against (EAV), a nidovirus belonging to the family , was evaluated in mammalian (Vero-E6) cells. Peptide-conjugated PMOs (P-PMOs) supplied in cell culture medium at micromolar concentrations were efficiently taken up by Vero-E6 cells and were minimally cytotoxic. The P-PMOs were designed to base pair to RNA sequences involved in different aspects of EAV amplification: genome replication, subgenomic mRNA synthesis, and translation of genome and subgenomic mRNAs. A novel recombinant EAV, expressing green fluorescent protein as part of its replicase polyproteins, was used to facilitate drug screening. A moderate reduction of EAV amplification was observed with relatively high concentrations of P-PMOs designed to anneal to the 3′-terminal regions of the viral genome or antigenome. To determine if the synthesis of subgenomic mRNAs could be specifically reduced, transcription-regulating sequences essential for their production, but not for the production of genomic RNA, were targeted, but these P-PMOs were found to be ineffective at transcription interference. In contrast, all four P-PMOs designed to base pair with targets in the genomic 5′ untranslated region markedly reduced virus amplification in a sequence-specific and dose-responsive manner. At concentrations in the low micromolar range, some of the P-PMOs tested completely inhibited virus amplification. translation assays showed that these P-PMOs were potent inhibitors of translation. The data suggest that these compounds could be useful as reagents for exploring the molecular mechanics of nidovirus translation and have anti-EAV potential at relatively low concentrations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81158-0
2005-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3081.html?itemId=/content/journal/jgv/10.1099/vir.0.81158-0&mimeType=html&fmt=ahah

References

  1. Albina, E. ( 1997; ). Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Vet Microbiol 55, 309–316.[CrossRef]
    [Google Scholar]
  2. Boguslavsky, D., Ierusalimsky, V., Malyshev, A., Balaban, P. & Belyavsky, A. ( 2003; ). Selective blockade of gene expression in a single identified snail neuron. Neuroscience 119, 15–18.[CrossRef]
    [Google Scholar]
  3. Cook, J. ( 2002; ). In Poultry Diseases, 5th edn, pp. 298–306. Edited by F. Jordan, M. Pattison, D. Alezander & T. Faragher. London: W. B. Saunders.
  4. Deas, T. S., Binduga-Gajewska, I., Tilgner, M. & 7 other authors ( 2005; ). Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol 79, 4599–4609.[CrossRef]
    [Google Scholar]
  5. den Boon, J. A., Kleijnen, M. F., Spaan, W. J. M. & Snijder, E. J. ( 1996; ). Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs. J Virol 70, 4291–4298.
    [Google Scholar]
  6. González, J. M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A. E. & Enjuanes, L. ( 2003; ). A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148, 2207–2235.[CrossRef]
    [Google Scholar]
  7. Heasman, J. ( 2002; ). Morpholino oligos: making sense of antisense? Dev Biol 243, 209–214.[CrossRef]
    [Google Scholar]
  8. Jubin, R., Vantuno, N. E., Kieft, J. S., Murray, M. G., Doudna, J. A., Lau, J. Y. & Baroudy, B. M. ( 2000; ). Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J Virol 74, 10430–10437.[CrossRef]
    [Google Scholar]
  9. Kinney, R. M., Huang, C. Y., Rose, B. C., Kroeker, A. D., Dreher, T. W., Iversen, P. L. & Stein, D. A. ( 2005; ). Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J Virol 79, 5116–5128.[CrossRef]
    [Google Scholar]
  10. Liu, Y., Sinha, S. & Owens, G. ( 2003; ). A transforming growth factor-βcontrol element required for SM α-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J Biol Chem 278, 48004–48011.[CrossRef]
    [Google Scholar]
  11. Makela, M. J., Puhakka, T., Ruuskanen, O., Leinonen, M., Saikku, P., Kimpimaki, M., Blomqvist, S., Hyypia, T. & Arstila, P. ( 1998; ). Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36, 539–542.
    [Google Scholar]
  12. McCaffrey, A. P., Meuse, L., Karimi, M., Contag, C. H. & Kay, M. A. ( 2003; ). A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology 38, 503–508.
    [Google Scholar]
  13. Molenkamp, R., Greve, S., Spaan, W. J. M. & Snijder, E. J. ( 2000a; ). Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs. J Virol 74, 9062–9070.[CrossRef]
    [Google Scholar]
  14. Molenkamp, R., Rozier, B. C., Greve, S., Spaan, W. J. M. & Snijder, E. J. ( 2000b; ). Isolation and characterization of an arterivirus defective interfering RNA genome. J Virol 74, 3156–3165.[CrossRef]
    [Google Scholar]
  15. Molenkamp, R., van Tol, H., Rozier, B. C., van der Meer, Y., Spaan, W. J. M. & Snijder, E. J. ( 2000c; ). The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81, 2491–2496.
    [Google Scholar]
  16. Moulton, H. M., Hase, M. C., Smith, K. M. & Iversen, P. L. ( 2003; ). HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev 13, 31–43.[CrossRef]
    [Google Scholar]
  17. Moulton, H. M., Nelson, M. H., Hatlevig, S. A., Reddy, M. T. & Iversen, P. L. ( 2004; ). Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem 15, 290–299.[CrossRef]
    [Google Scholar]
  18. Muto, E., Tabata, Y., Taneda, T., Aoki, Y., Muto, A., Arai, K. & Watanabe, S. ( 2004; ). Identification and characterization of Veph, a novel gene encoding a PH domain-containing protein expressed in the developing central nervous system of vertebrates. Biochimie 86, 523–531.[CrossRef]
    [Google Scholar]
  19. Nasevicius, A. & Ekker, S. C. ( 2000; ). Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26, 216–220.[CrossRef]
    [Google Scholar]
  20. Neuman, B. W., Stein, D. A., Kroeker, A. D., Paulino, A. D., Moulton, H. M., Iversen, P. L. & Buchmeier, M. J. ( 2004; ). Antisense morpholino-oligomers directed against the 5′ end of the genome inhibit coronavirus proliferation and growth. J Virol 78, 5891–5899.[CrossRef]
    [Google Scholar]
  21. Panavas, T., Pogany, J. & Nagy, P. D. ( 2002; ). Analysis of minimal promoter sequences for plus-strand synthesis by the Cucumber necrosis virus RNA-dependent RNA polymerase. Virology 296, 263–274.[CrossRef]
    [Google Scholar]
  22. Pasternak, A. O., van den Born, E., Spaan, W. J. M. & Snijder, E. J. ( 2001; ). Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20, 7220–7228.[CrossRef]
    [Google Scholar]
  23. Pasternak, A. O., van den Born, E., Spaan, W. J. M. & Snijder, E. J. ( 2003; ). The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol 77, 1175–1183.[CrossRef]
    [Google Scholar]
  24. Pedersen, K. W., van der Meer, Y., Roos, N. & Snijder, E. J. ( 1999; ). Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73, 2016–2026.
    [Google Scholar]
  25. Peiris, J. S., Lai, S. T., Poon, L. L. & 13 other authors ( 2003; ). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.[CrossRef]
    [Google Scholar]
  26. Saif, L. J., Redman, D. R., Brock, K. V., Kohler, E. M. & Heckert, R. A. ( 1988; ). Winter dysentery in adult dairy cattle: detection of coronavirus in the faeces. Vet Rec 123, 300–301.[CrossRef]
    [Google Scholar]
  27. Sawicki, S. G. & Sawicki, D. L. ( 1995; ). Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380, 499–506.
    [Google Scholar]
  28. Snijder, E. J. & Meulenberg, J. J. M. ( 2001; ). In Fields Virology, 4th edn, pp. 1205–1220. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  29. Summerton, J. ( 1999; ). Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489, 141–158.[CrossRef]
    [Google Scholar]
  30. Summerton, J. & Weller, D. ( 1997; ). Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7, 187–195.[CrossRef]
    [Google Scholar]
  31. Tijms, M. A., van Dinten, L. C., Gorbalenya, A. E. & Snijder, E. J. ( 2001; ). A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci U S A 98, 1889–1894.[CrossRef]
    [Google Scholar]
  32. Tortorici, M. A., Broering, T. J., Nibert, M. L. & Patton, J. T. ( 2003; ). Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278, 32673–32682.[CrossRef]
    [Google Scholar]
  33. van den Born, E., Gultyaev, A. P. & Snijder, E. J. ( 2004; ). Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10, 424–437.[CrossRef]
    [Google Scholar]
  34. van den Born, E., Posthuma, C. C., Gultyaev, A. P. & Snijder, E. J. ( 2005; ). Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region. J Virol 79, 6312–6324.[CrossRef]
    [Google Scholar]
  35. van Marle, G., Dobbe, J. C., Gultyaev, A. P., Luytjes, W., Spaan, W. J. M. & Snijder, E. J. ( 1999; ). Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 96, 12056–12061.[CrossRef]
    [Google Scholar]
  36. Zuniga, S., Sola, I., Alonso, S. & Enjuanes, L. ( 2004; ). Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78, 980–994.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81158-0
Loading
/content/journal/jgv/10.1099/vir.0.81158-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error