1887

Abstract

The antiviral efficacy of ten antisense phosphorodiamidate morpholino oligomers (PMOs) directed against (EAV), a nidovirus belonging to the family , was evaluated in mammalian (Vero-E6) cells. Peptide-conjugated PMOs (P-PMOs) supplied in cell culture medium at micromolar concentrations were efficiently taken up by Vero-E6 cells and were minimally cytotoxic. The P-PMOs were designed to base pair to RNA sequences involved in different aspects of EAV amplification: genome replication, subgenomic mRNA synthesis, and translation of genome and subgenomic mRNAs. A novel recombinant EAV, expressing green fluorescent protein as part of its replicase polyproteins, was used to facilitate drug screening. A moderate reduction of EAV amplification was observed with relatively high concentrations of P-PMOs designed to anneal to the 3′-terminal regions of the viral genome or antigenome. To determine if the synthesis of subgenomic mRNAs could be specifically reduced, transcription-regulating sequences essential for their production, but not for the production of genomic RNA, were targeted, but these P-PMOs were found to be ineffective at transcription interference. In contrast, all four P-PMOs designed to base pair with targets in the genomic 5′ untranslated region markedly reduced virus amplification in a sequence-specific and dose-responsive manner. At concentrations in the low micromolar range, some of the P-PMOs tested completely inhibited virus amplification. translation assays showed that these P-PMOs were potent inhibitors of translation. The data suggest that these compounds could be useful as reagents for exploring the molecular mechanics of nidovirus translation and have anti-EAV potential at relatively low concentrations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81158-0
2005-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3081.html?itemId=/content/journal/jgv/10.1099/vir.0.81158-0&mimeType=html&fmt=ahah

References

  1. Albina E. 1997; Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Vet Microbiol 55:309–316 [CrossRef]
    [Google Scholar]
  2. Boguslavsky D., Ierusalimsky V., Malyshev A., Balaban P., Belyavsky A. 2003; Selective blockade of gene expression in a single identified snail neuron. Neuroscience 119:15–18 [CrossRef]
    [Google Scholar]
  3. Cook J. 2002; In Poultry Diseases . , 5th edn. pp  298–306 Edited by Jordan F., Pattison M., Alezander D., Faragher T. London: W. B. Saunders;
  4. Deas T. S., Binduga-Gajewska I., Tilgner M. 7 other authors 2005; Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol 79:4599–4609 [CrossRef]
    [Google Scholar]
  5. den Boon J. A., Kleijnen M. F., Spaan W. J. M., Snijder E. J. 1996; Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs. J Virol 70:4291–4298
    [Google Scholar]
  6. González J. M., Gomez-Puertas P., Cavanagh D., Gorbalenya A. E., Enjuanes L. 2003; A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae . Arch Virol 148:2207–2235 [CrossRef]
    [Google Scholar]
  7. Heasman J. 2002; Morpholino oligos: making sense of antisense?. Dev Biol 243:209–214 [CrossRef]
    [Google Scholar]
  8. Jubin R., Vantuno N. E., Kieft J. S., Murray M. G., Doudna J. A., Lau J. Y., Baroudy B. M. 2000; Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J Virol 74:10430–10437 [CrossRef]
    [Google Scholar]
  9. Kinney R. M., Huang C. Y., Rose B. C., Kroeker A. D., Dreher T. W., Iversen P. L., Stein D. A. 2005; Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J Virol 79:5116–5128 [CrossRef]
    [Google Scholar]
  10. Liu Y., Sinha S., Owens G. 2003; A transforming growth factor- β control element required for SM α -actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J Biol Chem 278:48004–48011 [CrossRef]
    [Google Scholar]
  11. Makela M. J., Puhakka T., Ruuskanen O., Leinonen M., Saikku P., Kimpimaki M., Blomqvist S., Hyypia T., Arstila P. 1998; Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36:539–542
    [Google Scholar]
  12. McCaffrey A. P., Meuse L., Karimi M., Contag C. H., Kay M. A. 2003; A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology 38:503–508
    [Google Scholar]
  13. Molenkamp R., Greve S., Spaan W. J. M., Snijder E. J. 2000a; Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs. J Virol 74:9062–9070 [CrossRef]
    [Google Scholar]
  14. Molenkamp R., Rozier B. C., Greve S., Spaan W. J. M., Snijder E. J. 2000b; Isolation and characterization of an arterivirus defective interfering RNA genome. J Virol 74:3156–3165 [CrossRef]
    [Google Scholar]
  15. Molenkamp R., van Tol H., Rozier B. C., van der Meer Y., Spaan W. J. M., Snijder E. J. 2000c; The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81:2491–2496
    [Google Scholar]
  16. Moulton H. M., Hase M. C., Smith K. M., Iversen P. L. 2003; HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev 13:31–43 [CrossRef]
    [Google Scholar]
  17. Moulton H. M., Nelson M. H., Hatlevig S. A., Reddy M. T., Iversen P. L. 2004; Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem 15:290–299 [CrossRef]
    [Google Scholar]
  18. Muto E., Tabata Y., Taneda T., Aoki Y., Muto A., Arai K., Watanabe S. 2004; Identification and characterization of Veph, a novel gene encoding a PH domain-containing protein expressed in the developing central nervous system of vertebrates. Biochimie 86:523–531 [CrossRef]
    [Google Scholar]
  19. Nasevicius A., Ekker S. C. 2000; Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220 [CrossRef]
    [Google Scholar]
  20. Neuman B. W., Stein D. A., Kroeker A. D., Paulino A. D., Moulton H. M., Iversen P. L., Buchmeier M. J. 2004; Antisense morpholino-oligomers directed against the 5′ end of the genome inhibit coronavirus proliferation and growth. J Virol 78:5891–5899 [CrossRef]
    [Google Scholar]
  21. Panavas T., Pogany J., Nagy P. D. 2002; Analysis of minimal promoter sequences for plus-strand synthesis by the Cucumber necrosis virus RNA-dependent RNA polymerase. Virology 296:263–274 [CrossRef]
    [Google Scholar]
  22. Pasternak A. O., van den Born E., Spaan W. J. M., Snijder E. J. 2001; Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20:7220–7228 [CrossRef]
    [Google Scholar]
  23. Pasternak A. O., van den Born E., Spaan W. J. M., Snijder E. J. 2003; The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol 77:1175–1183 [CrossRef]
    [Google Scholar]
  24. Pedersen K. W., van der Meer Y., Roos N., Snijder E. J. 1999; Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73:2016–2026
    [Google Scholar]
  25. Peiris J. S., Lai S. T., Poon L. L. 13 other authors; 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  26. Saif L. J., Redman D. R., Brock K. V., Kohler E. M., Heckert R. A. 1988; Winter dysentery in adult dairy cattle: detection of coronavirus in the faeces. Vet Rec 123:300–301 [CrossRef]
    [Google Scholar]
  27. Sawicki S. G., Sawicki D. L. 1995; Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380:499–506
    [Google Scholar]
  28. Snijder E. J., Meulenberg J. J. M. 2001; In Fields Virology . , 4th edn. pp  1205–1220 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
  29. Summerton J. 1999; Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489141–158 [CrossRef]
    [Google Scholar]
  30. Summerton J., Weller D. 1997; Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195 [CrossRef]
    [Google Scholar]
  31. Tijms M. A., van Dinten L. C., Gorbalenya A. E., Snijder E. J. 2001; A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci U S A 98:1889–1894 [CrossRef]
    [Google Scholar]
  32. Tortorici M. A., Broering T. J., Nibert M. L., Patton J. T. 2003; Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278:32673–32682 [CrossRef]
    [Google Scholar]
  33. van den Born E., Gultyaev A. P., Snijder E. J. 2004; Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10:424–437 [CrossRef]
    [Google Scholar]
  34. van den Born E., Posthuma C. C., Gultyaev A. P., Snijder E. J. 2005; Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region. J Virol 79:6312–6324 [CrossRef]
    [Google Scholar]
  35. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J. M., Snijder E. J. 1999; Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 96:12056–12061 [CrossRef]
    [Google Scholar]
  36. Zuniga S., Sola I., Alonso S., Enjuanes L. 2004; Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78:980–994 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81158-0
Loading
/content/journal/jgv/10.1099/vir.0.81158-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error