1887

Abstract

A yeast two-hybrid study was conducted to catalogue the protein–protein interactions of the non-structural proteins. Five homodimer, three reciprocal heterodimer and four unidirectional heterodimer interactions were observed. While several interactions are similar to those described in previous studies using enteroviruses, such as homo- and heterodimeric interactions of the 2B, 3CD and 3D proteins, several were not found previously. Among these is the binding of the leader protein L to the proteinases 3C and 3CD. Unlike the poliovirus 3C, the teschovirus 3C proteinase dimerizes and interacts with 2BC, 3CD and 3D. The strongest interactions were observed for L–3C, L–3CD and 3C–3CD.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81144-0
2005-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2763.html?itemId=/content/journal/jgv/10.1099/vir.0.81144-0&mimeType=html&fmt=ahah

References

  1. Aguirre A., Barco A., Carrasco L., Nieva J. L. 2002; Viroporin-mediated membrane permeabilization. J Biol Chem 277:40434–40441 [CrossRef]
    [Google Scholar]
  2. Bergmann E. M., Mosimann S. C., Chernaia M. M., Malcolm B. A., James M. N. 1997; The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71:2436–2448
    [Google Scholar]
  3. Breeden L., Nasmyth K. 1985; Regulation of yeast HO gene. Cold Spring Harbor Symp Quant Biol 50:643–650 [CrossRef]
    [Google Scholar]
  4. Breeden L., Nasmyth K. 1987; Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48:389–397 [CrossRef]
    [Google Scholar]
  5. Cello J., Paul A. V., Wimmer E. 2002; Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016–1018 [CrossRef]
    [Google Scholar]
  6. Cuconati A., Xiang W., Lahser F., Pfister T., Wimmer E. 1998; A protein linkage map of the P2 nonstructural proteins of poliovirus. J Virol 72:1297–1307
    [Google Scholar]
  7. de Jong A. S., Schrama I. W. J., Willems P. H. G. M., Galama J. M. D., Melchers W. J. G., van Kuppeveld F. J. M. 2002; Multimerization reactions of coxsackievirus proteins 2B, 2C, and 2BC: a mammalian two-hybrid analysis. J Gen Virol 83:783–793
    [Google Scholar]
  8. Egger D., Pasamontes L., Bolten R., Boyko V., Bienz K. 1996; Reversible dissociation of the poliovirus replication complex: functions and interactions of its components in viral RNA synthesis. J Virol 70:8675–8683
    [Google Scholar]
  9. Fields S., Song O. K. 1989; A novel genetic system to detect protein/protein interactions. Nature 340:245–246 [CrossRef]
    [Google Scholar]
  10. Guarné A., Tormo J., Kirchweger R., Pfistermueller D., Fita I., Skern T. 1998; Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17:7469–7479 [CrossRef]
    [Google Scholar]
  11. Klebe R. J., Harris J. V., Sharp Z. D., Douglas M. G. 1983; A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341 [CrossRef]
    [Google Scholar]
  12. Krogerus C., Egger D., Smuilova O., Hyypiä T., Bienz K. 2003; Replication complex of human parechovirus 1. J Virol 77:8512–8523 [CrossRef]
    [Google Scholar]
  13. Krumbholz A., Dauber M., Henke A., Birch-Hirschfeld E., Knowles N. J., Stelzner A., Zell R. 2002; Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol 76:5813–5821 [CrossRef]
    [Google Scholar]
  14. Lyle J. M., Bullit E., Bienz K., Kirkegaard K. 2002; Visualization and functional analysis of RNA-dependent RNA polymerase lattices. Science 296:2218–2222 [CrossRef]
    [Google Scholar]
  15. Matthews D. A., Smith W. W., Ferre R. A. 8 other authors 1994; Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771 [CrossRef]
    [Google Scholar]
  16. Molla A., Paul A. V., Wimmer E. 1991; Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651 [CrossRef]
    [Google Scholar]
  17. Möller W., Amons R. 1985; Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett 186:1–7 [CrossRef]
    [Google Scholar]
  18. Mosimann S. C., Cherney M. M., Sia S., Plotch S., James M. N. 1997; Refined X-ray crystallography structure of the poliovirus 3C gene product. J Mol Biol 273:1032–1047 [CrossRef]
    [Google Scholar]
  19. Oberste M. S., Maher K., Pallansch M. A. 2003; Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae. Virology 314:283–293 [CrossRef]
    [Google Scholar]
  20. Ohlenschläger O., Wöhnert J., Bucci E., Seitz S., Häfner S., Ramachandran R., Zell R., Görlach M. 2004; The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 12:237–248 [CrossRef]
    [Google Scholar]
  21. Paul A. V. 2002; Possible unifying mechanism of picornavirus genome replication. In Molecular Biology of Picornaviruses pp  227–246 Edited by Semler B. L., Wimmer E. Washington, DC: ASM Press;
    [Google Scholar]
  22. Paul A. V., van Boom J. H., Filippov D., Wimmer E. 1998; Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393:280–284 [CrossRef]
    [Google Scholar]
  23. Sasaki J., Nagashima S., Taniguchi K. 2003; Aichi virus leader protein is involved in viral RNA replication and encapsidation. J Virol 77:10799–10807 [CrossRef]
    [Google Scholar]
  24. Stanway G., Brown F., Christian P. & 9 other authors 2005 Picornaviridae. In Virus Taxonomy, VIIIth Report of the ICTV , 8th edn. Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., A L. Ball. Elsevier/Academic Press; London: In press
    [Google Scholar]
  25. Xiang W., Cuconati A., Hope D., Kirkegaard K., Wimmer E. 1998; Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. J Virol 72:6732–6741
    [Google Scholar]
  26. Zell R., Dauber M., Krumbholz A., Henke A., Birch-Hirschfeld E., Stelzner A., Prager D., Wurm R. 2001; Porcine teschoviruses comprise at least eleven distinct serotypes: molecular and evolutionary aspects. J Virol 75:1620–1631 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81144-0
Loading
/content/journal/jgv/10.1099/vir.0.81144-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error