1887

Abstract

The envelope glycoproteins of Hepatitis C virus (HCV), E1 and E2, form a heterodimer that is retained in the endoplasmic reticulum (ER). The transmembrane (TM) domains play a major role in E1E2 heterodimerization and in ER retention. Two fully conserved charged residues in the middle of the TM domain of E2 (Asp and Arg) are crucial for these functions. Replacement of the Asp residue by a Leu impaired E1E2 heterodimerization, whereas the Arg-to-Leu mutation had a milder effect. Both Asp and Arg residues were shown to contribute to the ER retention function of E2. In addition, the entry function of HCV envelope glycoproteins was affected by these mutations. Together, these data indicate that the charged residues present in the TM domain of E2 play a major role in the biogenesis and the entry function of the E1E2 heterodimer. However, the Asp and Arg residues do not contribute equally to these functions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81140-0
2005-10-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2793.html?itemId=/content/journal/jgv/10.1099/vir.0.81140-0&mimeType=html&fmt=ahah

References

  1. Arkin, I. T. & Brunger, A. T. ( 1998; ). Statistical analysis of predicted transmembrane alpha-helices. Biochim Biophys Acta 1429, 113–128.[CrossRef]
    [Google Scholar]
  2. Bartosch, B., Dubuisson, J. & Cosset, F. L. ( 2003; ). Infectious hepatitis C pseudo-particles containing functional E1E2 envelope protein complexes. J Exp Med 197, 633–642.[CrossRef]
    [Google Scholar]
  3. Bonifacino, J. S., Suzuki, C. K. & Klausner, R. D. ( 1990; ). A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum. Science 247, 79–82.[CrossRef]
    [Google Scholar]
  4. Bonifacino, J. S., Cosson, P., Shah, N. & Klausner, R. D. ( 1991; ). Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J 10, 2783–2793.
    [Google Scholar]
  5. Cleverley, D. Z. & Lenard, J. ( 1998; ). The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci U S A 95, 3425–3430.[CrossRef]
    [Google Scholar]
  6. Cocquerel, L., Meunier, J.-C., Pillez, A., Wychowski, C. & Dubuisson, J. ( 1998; ). A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. J Virol 72, 2183–2191.
    [Google Scholar]
  7. Cocquerel, L., Wychowski, C., Minner, F., Penin, F. & Dubuisson, J. ( 2000; ). Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a key role in the processing, subcellular localization and assembly of these envelope proteins. J Virol 74, 3623–3633.[CrossRef]
    [Google Scholar]
  8. Cocquerel, L., Op de Beeck, A., Lambot, M., Roussel, J., Delgrange, D., Pillez, A., Wychowski, C., Penin, F. & Dubuisson, J. ( 2002; ). Topologic changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO J 21, 2893–2902.[CrossRef]
    [Google Scholar]
  9. Drummer, H. E. & Poumbourios, P. ( 2004; ). Hepatitis C virus glycoprotein E2 contains a membrane-proximal heptad repeat sequence that is essential for E1E2 glycoprotein heterodimerization and viral entry. J Biol Chem 279, 30066–30072.[CrossRef]
    [Google Scholar]
  10. Drummer, H. E., Maerz, A. & Poumbourios, P. ( 2003; ). Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Lett 546, 385–390.[CrossRef]
    [Google Scholar]
  11. Dubuisson, J. ( 2000; ). Folding, assembly and subcellular localization of HCV glycoproteins. Curr Top Microbiol Immunol 242, 135–148.
    [Google Scholar]
  12. Dubuisson, J., Hsu, H. H., Cheung, R. C., Greenberg, H. B., Russell, D. G. & Rice, C. M. ( 1994; ). Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68, 6147–6160.
    [Google Scholar]
  13. Dubuisson, J., Penin, F. & Moradpour, D. ( 2002; ). Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol 12, 517–523.[CrossRef]
    [Google Scholar]
  14. Duvet, S., Cocquerel, L., Pillez, A., Cacan, R., Verbert, A., Moradpour, D., Wychowski, C. & Dubuisson, J. ( 1998; ). Hepatitis C virus glycoprotein complex localization in the endoplasmic reticulum involves a determinant for retention and not retrieval. J Biol Chem 273, 32088–32095.[CrossRef]
    [Google Scholar]
  15. Flint, M., Maidens, C., Loomis-Price, L. D., Shotton, C., Dubuisson, J., Monk, P., Higginbottom, A., Levy, S. & McKeating, J. A. ( 1999; ). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol 73, 6235–6244.
    [Google Scholar]
  16. Goffard, A. & Dubuisson, J. ( 2003; ). Glycosylation of hepatitis C virus envelope proteins. Biochimie 85, 295–301.[CrossRef]
    [Google Scholar]
  17. Gratkowski, H., Lear, J. D. & DeGrado, W. F. ( 2001; ). Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci U S A 98, 880–885.[CrossRef]
    [Google Scholar]
  18. Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C. M. & McKeating, J. A. ( 2003; ). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100, 7271–7276.[CrossRef]
    [Google Scholar]
  19. Jones, D. T., Taylor, W. R. & Thornton, J. M. ( 1994; ). A mutation data matrix for transmembrane proteins. FEBS Lett 339, 269–275.[CrossRef]
    [Google Scholar]
  20. Kemble, G. W., Danieli, T. & White, J. M. ( 1994; ). Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76, 383–391.[CrossRef]
    [Google Scholar]
  21. Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. ( 1994; ). Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621.[CrossRef]
    [Google Scholar]
  22. Letourneur, F. & Cosson, P. ( 1998; ). Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains. J Biol Chem 273, 33273–33278.[CrossRef]
    [Google Scholar]
  23. Michalak, J.-P., Wychowski, C., Choukhi, A., Meunier, J.-C., Ung, S., Rice, C. M. & Dubuisson, J. ( 1997; ). Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol 78, 2299–2306.
    [Google Scholar]
  24. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. ( 1982; ). Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42, 3858–3863.
    [Google Scholar]
  25. Negre, D., Mangeot, P. E., Duisit, G. & 9 other authors ( 2000; ). Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7, 1613–1623.[CrossRef]
    [Google Scholar]
  26. Op De Beeck, A., Montserret, R., Duvet, S., Cocquerel, L., Cacan, R., Barberot, B., Le Maire, M., Penin, F. & Dubuisson, J. ( 2000; ). Role of the transmembrane domains of hepatitis C virus envelope proteins E1 and E2 in the assembly of the noncovalent E1E2 heterodimer. J Biol Chem 275, 31428–31437.[CrossRef]
    [Google Scholar]
  27. Op De Beeck, A., Cocquerel, L. & Dubuisson, J. ( 2001; ). Biogenesis of hepatitis C virus envelope glycoproteins. J Gen Virol 82, 2589–2595.
    [Google Scholar]
  28. Op De Beeck, A., Voisset, C., Bartosch, B., Ciczora, Y., Cocquerel, L., Keck, Z., Foung, S., Cosset, F. L. & Dubuisson, J. ( 2004; ). Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 78, 2994–3002.[CrossRef]
    [Google Scholar]
  29. Salzwedel, K., Johnston, P. B., Roberts, S. J., Dubay, J. W. & Hunter, E. ( 1993; ). Expression and characterization of glycophospholipid-anchored human immunodeficiency virus type 1 envelope glycoproteins. J Virol 67, 5279–5288.
    [Google Scholar]
  30. Sjoberg, M. & Garoff, H. ( 2003; ). Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J Virol 77, 3441–3450.[CrossRef]
    [Google Scholar]
  31. Stemmer, W. P. C. & Morris, S. K. ( 1992; ). Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site directed mutagenesis. Biotechniques 13, 215–220.
    [Google Scholar]
  32. Yang, M., Ellenberg, J., Bonifacino, J. S. & Weissman, A. M. ( 1997; ). The transmembrane domain of a carboxy-terminal anchored protein determines localization to the endoplasmic reticulum. J Biol Chem 272, 1970–1975.[CrossRef]
    [Google Scholar]
  33. Zhou, F. X., Merianos, H. J., Brunger, A. T. & Engelman, D. M. ( 2001; ). Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci U S A 98, 2250–2255.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81140-0
Loading
/content/journal/jgv/10.1099/vir.0.81140-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error