1887

Abstract

It has been previously shown that the majority of human immunodeficiency virus type 1 (HIV-1)-infected splenocytes can harbour multiple, divergent proviruses with a copy number ranging from one to eight. This implies that, besides point mutations, recombination should be considered as an important mechanism in the evolution of HIV within an infected host. To explore in detail the possible contributions of multi-infection and recombination to HIV evolution, the effects of major microscopic parameters of HIV replication (i.e. the point-mutation rate, the crossover number, the recombination rate and the provirus copy number) on macroscopic characteristics (such as the Hamming distance and the abundance of -point mutants) have been simulated . Simulations predict that multiple provirus copies per infected cell and recombination act in synergy to speed up the development of sequence diversity. Point mutations can be fixed for some time without fitness selection. The time needed for the selection of multiple mutations with increased fitness is highly variable, supporting the view that stochastic processes may contribute substantially to the kinetics of HIV variation .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81138-0
2005-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3109.html?itemId=/content/journal/jgv/10.1099/vir.0.81138-0&mimeType=html&fmt=ahah

References

  1. Baake, E. ( 2001; ). Mutation and recombination with tight linkage. J Math Biol 42, 455–488.[CrossRef]
    [Google Scholar]
  2. Baeck, T., Hammel, U. & Schwefel, H. P. ( 1997; ). Evolutionary computation: comments on the history and current state. IEEE Trans Evol Comput 1, 3–17.[CrossRef]
    [Google Scholar]
  3. Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, K. & Selbig, J. ( 2002; ). Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci U S A 99, 8271–8276.[CrossRef]
    [Google Scholar]
  4. Boerlijst, M. C., Bonhoeffer, S. & Nowak, M. ( 1996; ). Viral quasi-species and recombination. Proc R Soc Lond B Biol Sci 263, 1577–1584.[CrossRef]
    [Google Scholar]
  5. Bretscher, M. T., Althaus, C. L., Muller, V. & Bonhoeffer, S. ( 2004; ). Recombination in HIV and the evolution of drug resistance: for better or for worse? Bioessays 26, 180–188.[CrossRef]
    [Google Scholar]
  6. Carr, J. K., Salminen, M. O., Albert, J., Sanders-Buell, E., Gotte, D., Birx, D. L. & McCutchan, F. E. ( 1998; ). Full genome sequences of human immunodeficiency virus type 1 subtypes G and A/G intersubtype recombinants. Virology 247, 22–31.[CrossRef]
    [Google Scholar]
  7. Cavert, W., Notermans, D. W., Staskus, K. & 11 other authors ( 1997; ). Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276, 960–964.[CrossRef]
    [Google Scholar]
  8. Cheynier, R., Henrichwark, S., Hadida, F., Pelletier, E., Oksenhendler, E., Autran, B. & Wain-Hobson, S. ( 1994; ). HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 78, 373–387.[CrossRef]
    [Google Scholar]
  9. Cheynier, R., Kils-Hutten, L., Meyerhans, A. & Wain-Hobson, S. ( 2001; ). Insertion/deletion frequencies match those of point mutations in the hypervariable regions of the simian immunodeficiency virus surface envelope gene. J Gen Virol 82, 1613–1619.
    [Google Scholar]
  10. Christiansen, F. B., Otto, S. P., Bergman, A. & Feldman, M. W. ( 1998; ). Waiting with and without recombination: the time to production of a double mutant. Theor Popul Biol 53, 199–215.[CrossRef]
    [Google Scholar]
  11. Coffin, J. M. ( 1979; ). Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42, 1–26.[CrossRef]
    [Google Scholar]
  12. Drake, J. W. & Holland, J. J. ( 1999; ). Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96, 13910–13913.[CrossRef]
    [Google Scholar]
  13. Frost, S. D., Dumaurier, M. J., Wain-Hobson, S. & Brown, A. J. ( 2001; ). Genetic drift and within-host metapopulation dynamics of HIV-1 infection. Proc Natl Acad Sci U S A 98, 6975–6980.[CrossRef]
    [Google Scholar]
  14. Gratton, S., Cheynier, R., Dumaurier, M. J., Oksenhendler, E. & Wain-Hobson, S. ( 2000; ). Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc Natl Acad Sci U S A 97, 14566–14571.[CrossRef]
    [Google Scholar]
  15. Grossman, Z., Feinberg, M. B. & Paul, W. E. ( 1998; ). Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication. Proc Natl Acad Sci U S A 95, 6314–6319.[CrossRef]
    [Google Scholar]
  16. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M. & Markowitz, M. ( 1995; ). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.[CrossRef]
    [Google Scholar]
  17. Hoelscher, M., Kim, B., Maboko, L., Mhalu, F., von Sonnenburg, F., Birx, D. L. & McCutchan, F. E. ( 2001; ). High proportion of unrelated HIV-1 intersubtype recombinants in the Mbeya region of southwest Tanzania. AIDS 15, 1461–1470.[CrossRef]
    [Google Scholar]
  18. Jetzt, A. E., Yu, H., Klarmann, G. J., Ron, Y., Preston, B. D. & Dougherty, J. P. ( 2000; ). High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 74, 1234–1240.[CrossRef]
    [Google Scholar]
  19. Jung, A., Maier, R., Vartanian, J. P., Bocharov, G., Jung, V., Fischer, U., Meese, E., Wain-Hobson, S. & Meyerhans, A. ( 2002; ). Multiply infected spleen cells in HIV patients. Nature 418, 144.[CrossRef]
    [Google Scholar]
  20. Kils-Hutten, L., Cheynier, R., Wain-Hobson, S. & Meyerhans, A. ( 2001; ). Phylogenetic reconstruction of intrapatient evolution of human immunodeficiency virus type 1: predominance of drift and purifying selection. J Gen Virol 82, 1621–1627.
    [Google Scholar]
  21. Kustikova, O. S., Wahlers, A., Kuhlcke, K., Stahle, B., Zander, A. R., Baum, C. & Fehse, B. ( 2003; ). Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 102, 3934–3937.[CrossRef]
    [Google Scholar]
  22. Levy, D. N., Aldrovandi, G. M., Kutsch, O. & Shaw, G. M. ( 2004; ). Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A 101, 4204–4209.[CrossRef]
    [Google Scholar]
  23. Mansky, L. M. & Temin, H. M. ( 1995; ). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69, 5087–5094.
    [Google Scholar]
  24. Maynard Smith, J. ( 1989; ). Evolutionary Genetics. Oxford: Oxford University Press.
  25. Peeters, M., Liegeois, F., Torimiro, N., Bourgeois, A., Mpoudi, E., Vergne, L., Saman, E., Delaporte, E. & Saragosti, S. ( 1999; ). Characterization of a highly replicative intergroup M/O human immunodeficiency virus type 1 recombinant isolated from a Cameroonian patient. J Virol 73, 7368–7375.
    [Google Scholar]
  26. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. & Ho, D. D. ( 1996; ). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586.[CrossRef]
    [Google Scholar]
  27. Plikat, U., Nieselt-Struwe, K. & Meyerhans, A. ( 1997; ). Genetic drift can dominate short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo. J Virol 71, 4233–4240.
    [Google Scholar]
  28. Ribeiro, R. M. & Bonhoeffer, S. ( 2000; ). Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci U S A 97, 7681–7686.[CrossRef]
    [Google Scholar]
  29. Rouzine, I. M. & Coffin, J. M. ( 1999; ). Linkage disequilibrium test implies a large effective population number for HIV in vivo. Proc Natl Acad Sci U S A 96, 10758–10763.[CrossRef]
    [Google Scholar]
  30. Rouzine, I. M., Rodrigo, A. & Coffin, J. M. ( 2001; ). Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol Mol Biol Rev 65, 151–185.[CrossRef]
    [Google Scholar]
  31. Takehisa, J., Zekeng, L., Ido, E., Yamaguchi-Kabata, Y., Mboudjeka, I., Harada, Y., Miura, T., Kaptu, L. & Hayami, M. ( 1999; ). Human immunodeficiency virus type 1 intergroup (M/O) recombination in Cameroon. J Virol 73, 6810–6820.
    [Google Scholar]
  32. Wain-Hobson, S. ( 1993; ). Viral burden in AIDS. Nature 366, 22.[CrossRef]
    [Google Scholar]
  33. Wain-Hobson, S., Renoux-Elbe, C., Vartanian, J. P. & Meyerhans, A. ( 2003; ). Network analysis of human and simian immunodeficiency virus sequence sets reveals massive recombination resulting in shorter pathways. J Gen Virol 84, 885–895.[CrossRef]
    [Google Scholar]
  34. Wei, X., Ghosh, S. K., Taylor, M. E. & 9 other authors ( 1995; ). Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81138-0
Loading
/content/journal/jgv/10.1099/vir.0.81138-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3109 - 3118

A law of mass action-type model for the dynamics of single- and two-point mutants considering mutation and recombination

A genetic-algorithm model for HIV evolution [Single PDF file](130 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error