1887

Abstract

Noroviruses cause the majority of epidemic outbreaks of acute viral gastroenteritis worldwide. Human norovirus strains do not grow in cell culture, but recent carbohydrate binding, sequence and structural analyses have begun to define functional domains in the norovirus capsid that may be conserved among multiple antigenic types. The purpose of this study was to localize domains and define sequences in the major capsid protein VP1 that are important for cell interactions. Monoclonal antibodies to genogroups GI.1 and GII.2 reference strains Norwalk virus and Snow Mountain virus, respectively, were generated that blocked binding of recombinant virus-like particles to Caco-2 intestinal cells and inhibited haemagglutination. Peptides that mimicked the mAb binding epitopes were selected from a phage-displayed random nonapeptide library. Anti-recombinant Norwalk virus mAb 54.6 and anti-recombinant Snow Mountain virus mAb 61.21 recognized epitopes located in the protruding P2 domain of VP1. The epitope recognized by mAb 61.21 contained amino acids that are completely conserved among norovirus strains across genogroups, including strains isolated from swine, bovine and murine species. This study identifies the first epitope involved in inhibition of norovirus–cell interactions and supports increasing evidence that interactions between noroviruses and host cells rely on structures in the P2 domain of VP1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81134-0
2005-10-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2799.html?itemId=/content/journal/jgv/10.1099/vir.0.81134-0&mimeType=html&fmt=ahah

References

  1. Ando, T., Noel, J. S. & Fankhauser, R. L. ( 2000; ). Genetic classification of “Norwalk-like viruses”. J Infect Dis 181 (Suppl. 2), S336–S348.[CrossRef]
    [Google Scholar]
  2. Bertolotti-Ciarlet, A., White, L. J., Chen, R., Prasad, B. V. & Estes, M. K. ( 2002; ). Structural requirements for the assembly of Norwalk virus-like particles. J Virol 76, 4044–4055.[CrossRef]
    [Google Scholar]
  3. Burritt, J. B., Bond, C. W., Doss, K. W. & Jesaitis, A. J. ( 1996; ). Filamentous phage display of oligopeptide libraries. Anal Biochem 238, 1–13.[CrossRef]
    [Google Scholar]
  4. Chakravarty, S., Hutson, A. M., Estes, M. K. & Prasad, B. V. ( 2005; ). Evolutionary trace residues in noroviruses: importance in receptor binding, antigenicity, virion assembly, and strain diversity. J Virol 79, 554–568.[CrossRef]
    [Google Scholar]
  5. Fankhauser, R. L., Noel, J. S., Monroe, S. S., Ando, T. & Glass, R. I. ( 1998; ). Molecular epidemiology of “Norwalk-like viruses” in outbreaks of gastroenteritis in the United States. J Infect Dis 178, 1571–1578.[CrossRef]
    [Google Scholar]
  6. Fankhauser, R. L., Monroe, S. S., Noel, J. S., Humphrey, C. D., Bresee, J. S., Parashar, U. D., Ando, T. & Glass, R. I. ( 2002; ). Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. J Infect Dis 186, 1–7.[CrossRef]
    [Google Scholar]
  7. Glass, R. I., Noel, J., Ando, T., Fankhauser, R., Belliot, G., Mounts, A., Parashar, U. D., Bresee, J. S. & Monroe, S. S. ( 2000; ). The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics. J Infect Dis 181 (Suppl. 2), S254–S261.[CrossRef]
    [Google Scholar]
  8. Green, J., Vinje, J., Gallimore, C. I., Koopmans, M., Hale, A., Brown, D. W., Clegg, J. C. & Chamberlain, J. ( 2000a; ). Capsid protein diversity among Norwalk-like viruses. Virus Genes 20, 227–236; erratum 23, 241.
    [Google Scholar]
  9. Green, K. Y., Ando, T., Balayan, M. S. & 8 other authors ( 2000b; ). Taxonomy of the caliciviruses. J Infect Dis 181 (Suppl. 2), S322–S330.[CrossRef]
    [Google Scholar]
  10. Han, M. G., Smiley, J. R., Thomas, C. & Saif, L. J. ( 2004; ). Genetic recombination between two genotypes of genogroup III bovine noroviruses (BoNVs) and capsid sequence diversity among BoNVs and Nebraska-like bovine enteric caliciviruses. J Clin Microbiol 42, 5214–5224.[CrossRef]
    [Google Scholar]
  11. Hardy, M. E., White, L. J., Ball, J. M. & Estes, M. K. ( 1995; ). Specific proteolytic cleavage of recombinant Norwalk virus capsid protein. J Virol 69, 1693–1698.
    [Google Scholar]
  12. Hardy, M. E., Tanaka, T. N., Kitamoto, N., White, L. J., Ball, J. M., Jiang, X. & Estes, M. K. ( 1996; ). Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies. Virology 217, 252–261.[CrossRef]
    [Google Scholar]
  13. Harrington, P. R., Lindesmith, L., Yount, B., Moe, C. L. & Baric, R. S. ( 2002; ). Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. J Virol 76, 12335–12343.[CrossRef]
    [Google Scholar]
  14. Harrington, P. R., Vinje, J., Moe, C. L. & Baric, R. S. ( 2004; ). Norovirus capture with histo-blood group antigens reveals novel virus–ligand interactions. J Virol 78, 3035–3045.[CrossRef]
    [Google Scholar]
  15. Huang, P., Farkas, T., Marionneau, S. & 8 other authors ( 2003; ). Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188, 19–31.[CrossRef]
    [Google Scholar]
  16. Hutson, A. M., Atmar, R. L., Graham, D. Y. & Estes, M. K. ( 2002; ). Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185, 1335–1337.[CrossRef]
    [Google Scholar]
  17. Hutson, A. M., Atmar, R. L., Marcus, D. M. & Estes, M. K. ( 2003; ). Norwalk virus-like particle hemagglutination by binding to H histo-blood group antigens. J Virol 77, 405–415.[CrossRef]
    [Google Scholar]
  18. Hutson, A. M., Atmar, R. L. & Estes, M. K. ( 2004; ). Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol 12, 279–287.[CrossRef]
    [Google Scholar]
  19. Jiang, X., Wang, M., Graham, D. Y. & Estes, M. K. ( 1992; ). Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66, 6527–6532.
    [Google Scholar]
  20. Jiang, X., Huang, P., Zhong, W., Tan, M., Farkas, T., Morrow, A. L., Newburg, D. S., Ruiz-Palacios, G. M. & Pickering, L. K. ( 2004; ). Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. J Infect Dis 190, 1850–1859.[CrossRef]
    [Google Scholar]
  21. Karst, S. M., Wobus, C. E., Lay, M., Davidson, J. & Virgin, H. W. ( 2003; ). STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578.[CrossRef]
    [Google Scholar]
  22. Kitamoto, N., Tanaka, T., Natori, K., Takeda, N., Nakata, S., Jiang, X. & Estes, M. K. ( 2002; ). Cross-reactivity among several recombinant calicivirus virus-like particles (VLPs) with monoclonal antibodies obtained from mice immunized orally with one type of VLP. J Clin Microbiol 40, 2459–2465.[CrossRef]
    [Google Scholar]
  23. Koopmans, M., Vinje, J., de Wit, M., Leenen, I., van der Poel, W. & van Duynhoven, Y. ( 2000; ). Molecular epidemiology of human enteric caliciviruses in The Netherlands. J Infect Dis 181 (Suppl. 2), S262–S269.[CrossRef]
    [Google Scholar]
  24. Lindesmith, L., Moe, C., Marionneau, S., Ruvoen, N., Jiang, X., Lindblad, L., Stewart, P., LePendu, J. & Baric, R. ( 2003; ). Human susceptibility and resistance to Norwalk virus infection. Nat Med 9, 548–553.[CrossRef]
    [Google Scholar]
  25. Lochridge, V. P. & Hardy, M. E. ( 2003; ). Snow Mountain virus genome sequence and virus-like particle assembly. Virus Genes 26, 71–82.[CrossRef]
    [Google Scholar]
  26. Lopman, B., Vennema, H., Kohli, E. & 23 other authors ( 2004; ). Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363, 682–688.[CrossRef]
    [Google Scholar]
  27. Marionneau, S., Ruvoen, N., Le Moullac-Vaidye, B., Clement, M., Cailleau-Thomas, A., Ruiz-Palacois, G., Huang, P., Jiang, X. & Le Pendu, J. ( 2002; ). Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967–1977.[CrossRef]
    [Google Scholar]
  28. Mason, P. W., Rieder, E. & Baxt, B. ( 1994; ). RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A 91, 1932–1936.[CrossRef]
    [Google Scholar]
  29. Matsuura, Y., Tohya, Y., Mochizuki, M., Takase, K. & Sugimura, T. ( 2001; ). Identification of conformational neutralizing epitopes on the capsid protein of canine calicivirus. J Gen Virol 82, 1695–1702.
    [Google Scholar]
  30. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  31. Neill, J. D., Sosnovtsev, S. V. & Green, K. Y. ( 2000; ). Recovery and altered neutralization specificities of chimeric viruses containing capsid protein domain exchanges from antigenically distinct strains of feline calicivirus. J Virol 74, 1079–1084.[CrossRef]
    [Google Scholar]
  32. Noel, J. S., Fankhauser, R. L., Ando, T., Monroe, S. S. & Glass, R. I. ( 1999; ). Identification of a distinct common strain of “Norwalk-like viruses” having a global distribution. J Infect Dis 179, 1334–1344.[CrossRef]
    [Google Scholar]
  33. Prasad, B. V., Rothnagel, R., Jiang, X. & Estes, M. K. ( 1994; ). Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68, 5117–5125.
    [Google Scholar]
  34. Prasad, B. V., Hardy, M. E., Dokland, T., Bella, J., Rossmann, M. G. & Estes, M. K. ( 1999; ). X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290.[CrossRef]
    [Google Scholar]
  35. Stewart, P. L. & Nemerow, G. R. ( 1997; ). Recent structural solutions for antibody neutralization of viruses. Trends Microbiol 5, 229–233.[CrossRef]
    [Google Scholar]
  36. Tan, M., Huang, P., Meller, J., Zhong, W., Farkas, T. & Jiang, X. ( 2003; ). Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J Virol 77, 12562–12571; erratum 78, 3200.
    [Google Scholar]
  37. Tan, M., Hegde, R. S. & Jiang, X. ( 2004; ). The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol 78, 6233–6242.[CrossRef]
    [Google Scholar]
  38. Tohya, Y., Yokoyama, N., Maeda, K., Kawaguchi, Y. & Mikami, T. ( 1997; ). Mapping of antigenic sites involved in neutralization on the capsid protein of feline calicivirus. J Gen Virol 78, 303–305.
    [Google Scholar]
  39. Vinje, J. & Koopmans, M. P. ( 2000; ). Simultaneous detection and genotyping of “Norwalk-like viruses” by oligonucleotide array in a reverse line blot hybridization format. J Clin Microbiol 38, 2595–2601.
    [Google Scholar]
  40. Vinje, J., Green, J., Lewis, D. C., Gallimore, C. I., Brown, D. W. & Koopmans, M. P. ( 2000; ). Genetic polymorphism across regions of the three open reading frames of “Norwalk-like viruses”. Arch Virol 145, 223–241.[CrossRef]
    [Google Scholar]
  41. White, L. J., Ball, J. M., Hardy, M. E., Tanaka, T. N., Kitamoto, N. & Estes, M. K. ( 1996; ). Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol 70, 6589–6597.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81134-0
Loading
/content/journal/jgv/10.1099/vir.0.81134-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error