The bovine herpesvirus 1 gene encoding infected cell protein 0 (bICP0) can inhibit interferon-dependent transcription in the absence of other viral genes Free

Abstract

The infected cell protein 0 (bICP0) encoded by (BHV-1) stimulates viral gene expression and productive infection. As bICP0 is expressed constitutively during productive infection, it is considered to be the major viral regulatory protein. Like other alphaherpesvirus ICP0 homologues, bICP0 contains a zinc RING finger near its N terminus that activates transcription and regulates subcellular localization. In this study, evidence is provided that bICP0 represses the human beta interferon (IFN-) promoter and a simple promoter with consensus IFN-stimulated response elements following stimulation with double-stranded RNA (polyinosinic–polycytidylic acid), IFN regulatory factor 3 (IRF3) or IRF7. bICP0 also inhibits the ability of two protein kinases (TBK1 and IKK) to activate IFN- promoter activity. The zinc RING finger is necessary for inhibiting IFN-dependent transcription in certain cell types. Collectively, these studies suggest that bICP0 activates productive infection by stimulating viral gene expression and inhibiting IFN-dependent transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81109-0
2005-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2697.html?itemId=/content/journal/jgv/10.1099/vir.0.81109-0&mimeType=html&fmt=ahah

References

  1. Abril C., Engels M., Liman A., Hilbe M., Albini S., Franchini M., Suter M., Ackermann M. 2004; Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. J Virol 78:3644–3653 [CrossRef]
    [Google Scholar]
  2. Attwooll C., Denchi E. L., Helin K. 2004; The E2F family: specific functions and overlapping interests. EMBO J 23:4709–4716 [CrossRef]
    [Google Scholar]
  3. Barnes B., Lubyova B., Pitha P. M. 2002; On the role of IRF in host defense. J Interferon Cytokine Res 22:59–71 [CrossRef]
    [Google Scholar]
  4. Bratanich A. C., Jones C. J. 1992; Localization of cis -acting sequences in the latency-related promoter of bovine herpesvirus 1 which are regulated by neuronal cell type factors and immediate-early genes. J Virol 66:6099–6106
    [Google Scholar]
  5. Chakravarti D., Ogryzko V., Kao H.-Y., Nash A., Chen H., Nakatani Y., Evans R. M. 1999; A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96:393–403 [CrossRef]
    [Google Scholar]
  6. Devireddy L. R., Jones C. J. 1999; Activation of caspases and p53 by bovine herpesvirus 1 infection results in programmed cell death and efficient virus release. J Virol 73:3778–3788
    [Google Scholar]
  7. Everett R. D. 1987; A detailed mutational analysis of Vmw110, a trans -acting transcriptional activator encoded by herpes simplex virus type 1. EMBO J 6:2069–2076
    [Google Scholar]
  8. Everett R. D. 1988; Analysis of the functional domains of herpes simplex virus type 1 immediate-early polypeptide Vmw110. J Mol Biol 202:87–96 [CrossRef]
    [Google Scholar]
  9. Everett R. D. 2000; ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22:761–770 [CrossRef]
    [Google Scholar]
  10. Everett R. D., Barlow P., Milner A., Luisi B., Orr A., Hope G., Lyon D. 1993; A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J Mol Biol 234:1038–1047 [CrossRef]
    [Google Scholar]
  11. Everett R. D., Meredith M., Orr A., Cross A., Kathoria M., Parkinson J. 1997; A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16:1519–1530 [CrossRef]
    [Google Scholar]
  12. Everett R. D., Earnshaw W. C., Findlay J., Lomonte P. 1999a; Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 18:1526–1538 [CrossRef]
    [Google Scholar]
  13. Everett R. D., Lomonte P., Sternsdorf T., van Driel R., Orr A. 1999b; Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 112:4581–4588
    [Google Scholar]
  14. Fitzgerald K. A., McWhirter S. M., Faia K. L., Rowe D. C., Latz E., Golenbock D. T., Coyle A. J., Liao S.-M., Maniatis T. 2003; IKK ε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496
    [Google Scholar]
  15. Fraefel C., Zeng J., Choffat Y., Engels M., Schwyzer M., Ackermann M. 1994; Identification and zinc dependence of the bovine herpesvirus 1 transactivator protein BICP0. J Virol 68:3154–3162
    [Google Scholar]
  16. Geiser V., Jones C. 2003; Stimulation of bovine herpesvirus-1 productive infection by the adenovirus E1A gene and a cell cycle regulatory gene, E2F-4. J Gen Virol 84:929–938 [CrossRef]
    [Google Scholar]
  17. Hamamori Y., Sartorelli V., Ogryzko V., Puri P. L., Wu H.-Y., Wang J. Y. J., Nakatani Y., Kedes L. 1999; Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96:405–413 [CrossRef]
    [Google Scholar]
  18. Henderson G., Zhang Y., Inman M., Jones D., Jones C. 2004; Infected cell protein 0 encoded by bovine herpesvirus 1 can activate caspase 3 when overexpressed in transfected cells. J Gen Virol 85:3511–3516 [CrossRef]
    [Google Scholar]
  19. Honda K., Yanai H., Negishi H. 8 other authors 2005; IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777 [CrossRef]
    [Google Scholar]
  20. Inman M., Zhang Y., Geiser V., Jones C. 2001; The zinc ring finger in the bICP0 protein encoded by bovine herpesvirus-1 mediates toxicity and activates productive infection. J Gen Virol 82:483–492
    [Google Scholar]
  21. Jones C. 2003; Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16:79–95 [CrossRef]
    [Google Scholar]
  22. Jones C., Delhon G., Bratanich A., Kutish G., Rock D. 1990; Analysis of the transcriptional promoter which regulates the latency-related transcript of bovine herpesvirus 1. J Virol 64:1164–1170
    [Google Scholar]
  23. Katze M. G., He Y., Gale M. 2002; Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2:675–687 [CrossRef]
    [Google Scholar]
  24. Lin R., Noyce R. S., Collins S. E., Everett R. D., Mossman K. L. 2004; The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 78:1675–1684 [CrossRef]
    [Google Scholar]
  25. Maul G. G., Everett R. D. 1994; The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol 75:1223–1233 [CrossRef]
    [Google Scholar]
  26. Maul G. G., Guldner H. H., Spivack J. G. 1993; Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J Gen Virol 74:2679–2690 [CrossRef]
    [Google Scholar]
  27. Mossman K. L., Smiley J. R. 2002; Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol 76:1995–1998 [CrossRef]
    [Google Scholar]
  28. Mossman K. L., Saffran H. A., Smiley J. R. 2000; Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74:2052–2056 [CrossRef]
    [Google Scholar]
  29. Mossman K. L., Macgregor P. F., Rozmus J. J., Goryachev A. B., Edwards A. M., Smiley J. R. 2001; Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75:750–758 [CrossRef]
    [Google Scholar]
  30. Munshi N., Agalioti T., Lomvardas S., Merika M., Chen G., Thanos D. 2001; Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 293:1133–1136 [CrossRef]
    [Google Scholar]
  31. Parkinson J., Everett R. D. 2000; Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74:10006–10017 [CrossRef]
    [Google Scholar]
  32. Peng W., Henderson G., Inman M., BenMohamed L., Perng G.-C., Wechsler S. L., Jones C. 2005; The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J Virol 79:6162–6171 [CrossRef]
    [Google Scholar]
  33. Peters G. A., Khoo D., Mohr I., Sen G. C. 2002; Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J Virol 76:11054–11064 [CrossRef]
    [Google Scholar]
  34. Sarkar S. N., Peters K. L., Elco C. P., Sakamoto S., Pal S., Sen G. C. 2004; Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol 11:1060–1067 [CrossRef]
    [Google Scholar]
  35. Sharma S., tenOever B. R., Grandvaux N., Zhou G.-P., Lin R., Hiscott J. 2003; Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151 [CrossRef]
    [Google Scholar]
  36. Tikoo S. K., Campos M., Babiuk L. A. 1995; Bovine herpesvirus 1 (BHV-1): biology, pathogenesis, and control. Adv Virus Res 45:191–223
    [Google Scholar]
  37. Wirth U. V., Fraefel C., Vogt B., Vlček Č., Pačes V., Schwyzer M. 1992; Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3′ coterminal and encode a putative zinc finger transactivator protein. J Virol 66:2763–2772
    [Google Scholar]
  38. Zhang Y., Jones C. 2001; The bovine herpesvirus 1 immediate-early protein (bICP0) associates with histone deacetylase 1 to activate transcription. J Virol 75:9571–9578 [CrossRef]
    [Google Scholar]
  39. Zhang Y., Zhou J., Jones C. 2005; Identification of functional domains within the bICP0 protein encoded by bovine herpesvirus 1. J Gen Virol 86:879–886 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81109-0
Loading
/content/journal/jgv/10.1099/vir.0.81109-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed