1887

Abstract

(HCV) displays high genetic diversity. Inter-host sequence variability may mainly reflect a neutral drift evolution. In contrast, intra-host evolution may be driven by an adaptive selection to host responses to infection. Here, HCV E2 intra-host evolution in two patients during the course and follow-up of successive treatments with IFN- and IFN-/ribavirin was investigated. Phylogenetic analyses suggested that adaptive pressures prompt a continuous selection of viral variants derived from the previous ones (intra-lineage evolution) and/or a swapping of viral lineages during the course of the infection (inter-lineage evolution). Selection would act not only on the phenotypic features of hypervariable region 1 (HVR1) but also on those of the flanking regions. The pressures operate mainly at the amino acid level, but they also appeared to act on nucleotide sequences. Moreover, HVR1 heterogeneity seemed to be strongly constrained. This work contributes to the knowledge of HCV intra-host evolution during chronicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81084-0
2005-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2781.html?itemId=/content/journal/jgv/10.1099/vir.0.81084-0&mimeType=html&fmt=ahah

References

  1. Abate, I., Lo Iacono, O., Di Stefano, R. & 10 other authors ( 2004; ). HVR-1 quasispecies modifications occur early and are correlated to initial but not sustained response in HCV-infected patients treated with pegylated- or standard-interferon and ribavirin. J Hepatol 40, 831–836.[CrossRef]
    [Google Scholar]
  2. Alfonso, V., Flichman, D. M., Sookoian, S., Mbayed, V. A. & Campos, R. H. ( 2004; ). Evolutionary study of the HVR1 of E2 in chronic HCV infection. J Gen Virol 85, 39–46.[CrossRef]
    [Google Scholar]
  3. Alter, H. J. & Seeff, L. B. ( 2000; ). Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome. Semin Liver Dis 20, 17–35.[CrossRef]
    [Google Scholar]
  4. Chambers, T. J., Fan, X., Droll, D. A., Hembrador, E., Slater, T., Nickells, M. W., Dustin, L. B. & Dibisceglie, A. M. ( 2005; ). Quasispecies heterogeneity within the E1/E2 region as a pretreatment variable during pegylated interferon therapy of chronic hepatitis C virus infection. J Virol 79, 3071–3083.[CrossRef]
    [Google Scholar]
  5. Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. & Houghton, M. ( 1989; ). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362.[CrossRef]
    [Google Scholar]
  6. Choo, Q. L., Richman, K., Han, J. H. & 11 other authors ( 1991; ). Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A 88, 2451–2455.[CrossRef]
    [Google Scholar]
  7. Colina, R., Casane, D., Vasquez, S., García-Aguirre, L., Chunga, A., Romero, H., Khan, B. & Cristina, J. ( 2004; ). Evidence of intratypic recombination in natural populations of hepatitis C virus. J Gen Virol 85, 31–37.[CrossRef]
    [Google Scholar]
  8. Domingo, E., Baranowski, E., Ruiz-Jarabo, C. M., Martín-Hernández, A. M., Sáiz, J. C. & Escaramís, C. ( 1998; ). Quasispecies structure and persistence of RNA viruses. Emerg Infect Dis 4, 521–527.[CrossRef]
    [Google Scholar]
  9. Farci, P., Shimoda, A., Wong, D. & 7 other authors ( 1996; ). Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc Natl Acad Sci U S A 93, 15394–15399.[CrossRef]
    [Google Scholar]
  10. Farci, P., Shimoda, A., Coiana, A. & 9 other authors ( 2000; ). The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288, 339–344.[CrossRef]
    [Google Scholar]
  11. Farci, P., Strazzera, R., Alter, H. J. & 10 other authors ( 2002; ). Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc Natl Acad Sci U S A 99, 3081–3086.[CrossRef]
    [Google Scholar]
  12. Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L. N., Daly, J. M., Mumford, J. A. & Holmes, E. C. ( 2004; ). Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332.[CrossRef]
    [Google Scholar]
  13. Hijikata, M., Katto, N., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S. & Shimotohno, K. ( 1991; ). Hypervariable regions in the putative glycoprotein of hepatitis C virus. Biochem Biophys Res Commun 175, 220–228.[CrossRef]
    [Google Scholar]
  14. Kalinina, O., Norder, H., Mukomolov, S. & Magnius, L. O. ( 2002; ). A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. J Virol 76, 4034–4043.[CrossRef]
    [Google Scholar]
  15. Kalinina, O., Norder, H. & Magnius, L. O. ( 2004; ). Full-length open reading frame of a recombinant hepatitis C virus strain from St Petersburg: proposed mechanism for its formation. J Gen Virol 85, 1853–1857.[CrossRef]
    [Google Scholar]
  16. Kantzanou, M., Lucas, M., Barnes, E., Komatsu, H., Dusheiko, G., Ward, S., Harcourt, G. & Klenerman, P. ( 2003; ). Viral escape and T cell exhaustion in hepatitis C virus infection analysed using Class I peptide tetramers. Immunol Lett 85, 165–171.[CrossRef]
    [Google Scholar]
  17. Kiyosawa, K., Sodeyama, T., Tanaka, E. & 8 other authors ( 1990; ). Interrelationship of blood transfusion, non-A, non-B hepatitis and hepatocellular carcinoma: analysis by detection of antibody to hepatitis C virus. Hepatology 12, 671–675.[CrossRef]
    [Google Scholar]
  18. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  19. Kurosaki, M., Enomoto, N., Marumo, F. & Sato, C. ( 1993; ). Rapid sequence variation of the hypervariable region of hepatitis C virus during the course of chronic infection. Hepatology 18, 1293–1299.[CrossRef]
    [Google Scholar]
  20. Manzin, A., Solforosi, L., Petrelli, E., Macarri, G., Tosone, G., Piazza, M. & Clementi, M. ( 1998; ). Evolution of hypervariable region 1 of hepatitis C virus in primary infection. J Virol 72, 6271–6276.
    [Google Scholar]
  21. McAllister, J., Casino, C., Davison, F., Power, J., Lawlor, E., Yap, P. L., Simmonds, P. & Smith, D. B. ( 1998; ). Long-term evolution of the hypervariable region of hepatitis C virus in a common-source-infected cohort. J Virol 72, 4893–4905.
    [Google Scholar]
  22. Muller, R. ( 1996; ). The natural history of hepatitis C: clinical experiences. J Hepatol 24, 52–54.[CrossRef]
    [Google Scholar]
  23. Pawlotsky, J. M. ( 2003; ). The nature of interferon-α resistance in hepatitis C virus infection. Curr Opin Infect Dis 16, 587–592.[CrossRef]
    [Google Scholar]
  24. Pawlotsky, J. M., Germanidis, G., Frainais, P. O., Bouvier, M., Soulier, A., Pellerin, M. & Dhumeaux, D. ( 1999; ). Evolution of the hepatitis C virus second enveloped protein hypervariable region in chronically infected patients receiving alpha interferon therapy. J Virol 73, 6490–6499.
    [Google Scholar]
  25. Penin, F., Combet, C., Gemanidis, G., Frainais, P. O., Deléage, G. & Pawlotsky, J. M. ( 2001; ). Conservation of the conformation and positive charges of hepatitis C virus E2 envelope glycoprotein hypervariable region 1 points to a role in cell attachment. J Virol 75, 5703–5710.[CrossRef]
    [Google Scholar]
  26. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  27. Saito, I., Miyamura, T., Ohbayashi, A. & 10 other authors ( 1990; ). Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A 87, 6547–6549.[CrossRef]
    [Google Scholar]
  28. Sheridan, I., Pybus, O. G., Holmes, E. C. & Klenerman, P. ( 2004; ). High-resolution phylogenetic analysis of hepatitis C virus adaptation and its relationship to disease progression. J Virol 78, 3447–3454.[CrossRef]
    [Google Scholar]
  29. Shimizu, Y. K., Igarashi, H., Kiyohara, T., Cabezon, T., Farci, P., Purcell, R. H. & Yoshikura, H. ( 1996; ). A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures. Virology 223, 409–412.[CrossRef]
    [Google Scholar]
  30. Simmonds, P. ( 1999; ). Viral heterogeneity of the hepatitis C virus. J Hepatol 31, 54–60.[CrossRef]
    [Google Scholar]
  31. Simmonds, P. ( 2004; ). Genetic diversity and evolution of hepatitis C virus –15 years on. J Gen Virol 85, 3173–3188.[CrossRef]
    [Google Scholar]
  32. Sobolev, B. N., Poroikov, V., Olenina, L. V., Kolesanova, E. F. & Archakov, A. I. ( 2000; ). Comparative analysis of amino acid sequences from envelope proteins isolated from different hepatitis C virus variants: possible role of conservative and variable regions. J Viral Hepat 7, 368–374.[CrossRef]
    [Google Scholar]
  33. Stumpf, M. P. H. & Pybus, O. G. ( 2002; ). Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiol Lett 214, 143–152.[CrossRef]
    [Google Scholar]
  34. Swofford, D. L. ( 2002; ). paup*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10. Sunderland, MA: Sinauer Associates.
  35. Taniguchi, S., Okamoto, H., Sakamoto, M. & 7 other authors ( 1993; ). A structurally flexible and antigenically variable N-terminal domain of the hepatitis C virus E2/NS1 protein: implication for an escape from antibody. Virology 195, 297–301.[CrossRef]
    [Google Scholar]
  36. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  37. Van Doorn, L. J., Capriles, I., Maertens, G., DeLeys, R., Murray, K., Kos, T., Schellekens, H. & Quint, W. ( 1995; ). Sequence evolution of the hypervariable region in the putative envelope region E2/NS1 of hepatitis C virus is correlated with specific humoral immune responses. J Virol 69, 773–778.
    [Google Scholar]
  38. Weiner, A. J., Brauer, M. J., Rosenblatt, J. & 8 other authors ( 1991; ). Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180, 842–848.[CrossRef]
    [Google Scholar]
  39. Weiner, A. J., Geysen, H. M., Christopherson, C. & 12 other authors ( 1992; ). Evidence for immune selection of hepatitis C virus (HCV) putative envelope glycoprotein variants: potential role in chronic HCV infections. Proc Natl Acad Sci U S A 89, 3468–3472.[CrossRef]
    [Google Scholar]
  40. Zeuzem, S. ( 2004; ). Heterogeneous virologic response rates to interferon-based therapy in patients with chronic hepatitis C: who responds less well? Ann Intern Med 140, 370–381.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81084-0
Loading
/content/journal/jgv/10.1099/vir.0.81084-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2781 - 2786

Phylogenetic trees corresponding to the FR PCR primers Best-fitting nucleotide substitution models and rate parameters for the different datasets Mean intra-/inter-sample genetic distances for the entire fragment, the HVR1 and flanking region (FR) of the lineages from patient A Mean intra-/inter-sample genetic distances for populations belonging to lineages from patient B [Single PDF file](119 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error