1887

Abstract

Multiple synonymous substitution mutations in the P3 cistron did not affect translation but rendered the virus incapable of systemic infection. Multiple synonymous substitutions in the cylindrical inclusion cistron did not alter infectivity or translation. To assess replication and movement phenotypes, P3 mutations were placed in context with a GUS reporter gene. GUS activity measured in barley protoplasts 36 h post-transfection indicated that mutants with synonymous substitutions in P3 retained the ability to replicate at 22–80 % of wild-type levels. Almost no GUS activity was detected in protoplasts transfected with a P3 frame-shift mutant. Histochemical GUS assays conducted 3 days post-inoculation (p.i.) revealed genomes with multiple synonymous substitutions in P3, which were able to establish infection foci limited to small clusters of cells that increased in size only slightly by 5 days p.i. Infection foci produced by wild-type -expressing GUS were much larger at 3 days p.i. and had coalesced by 5 days p.i. No GUS activity was detected in plants inoculated with the frame-shift mutant bearing GUS. Three of four mutants, each with a single synonymous substitution in the 3′-proximal half of the P3 cistron, were wild-type with respect to systemic infectivity. A model RNA secondary structure obtained for the region was disrupted by the debilitating single mutation but not by the other three single mutations. Collectively, these results identify an internal RNA sequence element in the P3 cistron that affects both replication and movement of the viral genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81081-0
2005-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862605.html?itemId=/content/journal/jgv/10.1099/vir.0.81081-0&mimeType=html&fmt=ahah

References

  1. Aoki S., Takebe I. 1969; Infection of tobacco mesophyll protoplasts by tobacco mosaic virus ribonucleic acid. Virology 39:439–448 [CrossRef]
    [Google Scholar]
  2. Barton D. J., O'Donnell B. J., Flanegan J. B. 2001; 5′ cloverleaf in poliovirus RNA is a cis -acting replication element required for negative-strand synthesis. EMBO J 20:1439–1448 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Carrington J. C., Dougherty W. G. 1987; Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. J Virol 61:2540–2548
    [Google Scholar]
  5. Carrington J. C., Herndon K. L. 1992; Characterization of the potyviral HC-Pro autoproteolytic cleavage site. Virology 187:308–315 [CrossRef]
    [Google Scholar]
  6. Carrington J. C., Jensen P. E., Schaad M. C. 1998; Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400 [CrossRef]
    [Google Scholar]
  7. Choi I.-R., French R., Hein G. L., Stenger D. C. 1999; Fully biologically active in vitro transcripts of the eriophyid mite-transmitted wheat streak mosaic tritimovirus. Phytopathology 89:1182–1185 [CrossRef]
    [Google Scholar]
  8. Choi I.-R., Stenger D. C., French R. 2000a; Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 267:185–198 [CrossRef]
    [Google Scholar]
  9. Choi I.-R., Stenger D. C., Morris T. J., French R. 2000b; A plant virus vector for systemic expression of foreign genes in cereals. Plant J 23:547–555 [CrossRef]
    [Google Scholar]
  10. Choi I.-R., Hall J. S., Henry M., Zhang L., Hein G. L., Stenger D. C. 2001; Contributions of genetic drift and negative selection on the evolution of three strains of wheat streak mosaic virus. Arch Virol 146:619–628 [CrossRef]
    [Google Scholar]
  11. Choi I.-R., Horken K. M., Stenger D. C., French R. 2002; Mapping of the P1 proteinase cleavage site in the polyprotein of Wheat streak mosaic virus (genus Tritimovirus ). J Gen Virol 83:443–450
    [Google Scholar]
  12. Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C. 1994; Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491
    [Google Scholar]
  13. Dolja V. V., Haldeman-Cahill R., Montgomery A. E., Vandenbosch K. A., Carrington J. C. 1995; Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch virus. Virology 206:1007–1016 [CrossRef]
    [Google Scholar]
  14. Dougherty W. G., Cary S. M., Parks T. D. 1989; Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171:356–364 [CrossRef]
    [Google Scholar]
  15. Gerber K., Wimmer E., Paul A. V. 2001; Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis -replicating element in the coding sequence of 2Apro . J Virol 75:10979–10990 [CrossRef]
    [Google Scholar]
  16. Goodfellow I., Chaudhry Y., Richardson A., Meredith J., Almond J. W., Barclay W., Evans D. J. 2000; Identification of a cis -acting replication element within the poliovirus coding region. J Virol 74:4590–4600 [CrossRef]
    [Google Scholar]
  17. Goodfellow I. G., Polacek C., Andino R., Evans D. J. 2003; The poliovirus 2C cis -acting replication element-mediated uridylylation of VPg is not required for synthesis of negative-sense genomes. J Gen Virol 84:2359–2363 [CrossRef]
    [Google Scholar]
  18. Haldeman-Cahill R., Daros J.-A., Carrington J. C. 1998; Secondary structures in the capsid protein coding sequence and 3′ nontranslated region involved in amplification of the tobacco etch virus genome. J Virol 72:4072–4079
    [Google Scholar]
  19. Hjulsager C. K., Lund O. S., Johansen I. E. 2002; A new pathotype of Pea seedborne mosaic virus explained by properties of the P3-6k1- and viral genome-linked protein (VPg)-coding regions. Mol Plant Microbe Interact 15:169–171 [CrossRef]
    [Google Scholar]
  20. Hofacker I. L., Fekete M., Stadler P. F. 2002; Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066 [CrossRef]
    [Google Scholar]
  21. Jefferson R. A., Kavanagh T. A., Bevan M. W. 1987; GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
    [Google Scholar]
  22. Jenner C. E., Tomimura K., Ohsima K., Hughes S. L., Walsh J. A. 2002; Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59 [CrossRef]
    [Google Scholar]
  23. Jenner C. E., Wang X., Tomimura K., Ohshima K., Ponz F., Walsh J. A. 2003; The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784 [CrossRef]
    [Google Scholar]
  24. Johansen E. I., Lund O. S., Hjulsager C. K., Laursen J. 2001; Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75:6609–6614 [CrossRef]
    [Google Scholar]
  25. Kasschau K. D., Cronin S., Carrington J. C. 1997; Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-protease. Virology 228:251–262 [CrossRef]
    [Google Scholar]
  26. Kekarainen T., Mertis A., Oruetxebarria I., Rajamaki M.-L., Valkonen J. P. T. 1999; Comparison of the complete sequences of five different isolates of Potato virus A (PVA), genus Potyvirus . Arch Virol 144:2355–2366 [CrossRef]
    [Google Scholar]
  27. Klein P. G., Klein R. R., Rodríguez-Cerezo E., Hunt A. G., Shaw J. G. 1994; Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769 [CrossRef]
    [Google Scholar]
  28. Langenberg W. G. 1993; Structural proteins of three viruses in the Potyviridae adhere only to their homologous cylindrical inclusions in mixed infections. J Struct Biol 110:188–195 [CrossRef]
    [Google Scholar]
  29. Lobert P.-E., Escriou N., Ruelle J., Michiels T. 1999; A coding RNA sequence acts as a replication signal in cardioviruses. Proc Natl Acad Sci U S A 96:11560–11565 [CrossRef]
    [Google Scholar]
  30. Loesch-Freis L. E., Hall T. C. 1980; Synthesis, accumulation and encapsidation of individual brome mosaic-virus RNA components in barley protoplasts. J Gen Virol 47:323–332 [CrossRef]
    [Google Scholar]
  31. Lopez-Moya J. J., Pirone T. P. 1998; Charge changes near the N terminus of the coat protein of two potyviruses affect virus movement. J Gen Virol 79:161–165
    [Google Scholar]
  32. Lyons T., Murray K. E., Roberts A. W., Barton D. J. 2001; Poliovirus 5′-terminal cloverleaf RNA is required in cis for VPg uridylylation and the initiation of negative-strand RNA synthesis. J Virol 75:10696–10708 [CrossRef]
    [Google Scholar]
  33. Mahajan S., Dolja V. V., Carrington J. C. 1996; Roles of the sequence encoding tobacco etch virus capsid protein in genome amplification: requirements for the translation process and a cis -active elements. J Virol 70:4370–4379
    [Google Scholar]
  34. Marcus G. A., Silverman N., Berger S. L., Horiuchi J., Guarente J. 1994; Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J 13:4807–4815
    [Google Scholar]
  35. McKnight K. L., Lemon S. M. 1996; Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol 70:1941–1952
    [Google Scholar]
  36. Merits A., Guo D., Jarvekulg L., Saarma M. 1999; Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15–22 [CrossRef]
    [Google Scholar]
  37. Morasco B. J., Sharma N., Parilla J., Flanegan J. B. 2003; Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis. J Virol 77:5136–5144 [CrossRef]
    [Google Scholar]
  38. Murray K. E., Barton D. J. 2003; Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J Virol 77:4739–4750 [CrossRef]
    [Google Scholar]
  39. Oh C.-S., Carrington J. C. 1989; Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology 173:692–699 [CrossRef]
    [Google Scholar]
  40. Rabenstein F., Seifers D. L., Schubert J., French R., Stenger D. C. 2002; Phylogenetic relationships, strain diversity, and biogeography of tritimoviruses. J Gen Virol 83:895–906
    [Google Scholar]
  41. Rieder E., Paul A. V., Kim D. W., van Boom J. H., Wimmer E. 2000; Genetic and biochemical studies of poliovirus cis -acting replication element cre in relation to VPg uridylylation. J Virol 74:10371–10380 [CrossRef]
    [Google Scholar]
  42. Rodríguez-Cerezo E., Ammar E. D., Pirone T. P., Shaw J. G. 1993; Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. J Gen Virol 74:1945–1949 [CrossRef]
    [Google Scholar]
  43. Rojas M. R., Zerbini F. M., Allison R. F., Gilbertson R. L., Lucas W. J. 1997; Capsid protein and helper component proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283–295 [CrossRef]
    [Google Scholar]
  44. Sáenz P., Cervera M. T., Dallot S., Quilot L., Quilot J.-B., Riechman J. L., García J. A. 2000; Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1 . J Gen Virol 81:557–566
    [Google Scholar]
  45. Sharp P. M., Tuohy T. M. F., Mosurski K. R. 1986; Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125–5143 [CrossRef]
    [Google Scholar]
  46. Shen R. Z., Miller W. A. 2004; Subgenomic RNA as a riboregulator: negative regulation of RNA replication by barley yellow dwarf virus subgenomic RNA 2. Virology 327:196–205 [CrossRef]
    [Google Scholar]
  47. Shukla D. D., Ward C. W., Brunt A. A., Berger P. H. 1998 Potyviridae family. AAB/CMI Descriptions of Plant Viruses , no. 366
    [Google Scholar]
  48. Sit T. L., Vaewhongs A. A., Lommel S. A. 1998; RNA-mediated transactivation of transcription from a viral RNA. Science 281:829–832 [CrossRef]
    [Google Scholar]
  49. Stenger D. C., Hall J. S., Choi I.-R., French R. 1998; Phylogenetic relationships within the family Potyviridae : wheat streak mosaic virus and brome streak mosaic virus are not members of the genus Rymovirus . Phytopathology 88:782–787 [CrossRef]
    [Google Scholar]
  50. Suehiro N., Natsuaki T., Watanabe T., Okuda S. 2004; An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphauns sativus is in its P3 protein. J Gen Virol 85:2087–2098 [CrossRef]
    [Google Scholar]
  51. Turner D. H., Sugimoto N., Freier S. M. 1988; RNA structure prediction. Annu Rev Biophys Biophys Chem 17:167–192 [CrossRef]
    [Google Scholar]
  52. Urcuqui-Inchima S., Haenni A.-L., Bernardi F. 2001; Potyvirus proteins: a wealth of functions. Virus Res 74:157–175 [CrossRef]
    [Google Scholar]
  53. Wu X., Shaw J. G. 1998; Evidence that assembly of a potyvirus begins near the 5′ terminus of the viral RNA. J Gen Virol 79:1525–1529
    [Google Scholar]
  54. Yang Y., Rijnbrand R., McKnight K. L., Wimmer E., Paul A., Martin A., Lemon S. M. 2002; Sequence requirement for viral RNA replication and VPg uridylylation directed by the internal cis -acting replication element ( cre ) of human rhinovirus type 14. J Virol 76:7485–7494 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81081-0
Loading
/content/journal/jgv/10.1099/vir.0.81081-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error