1887

Abstract

The coronavirus nucleocapsid (N) protein is a viral RNA-binding protein with multiple functions in terms of virus replication and modulating cell signalling pathways. N protein is composed of three distinct regions containing RNA-binding motif(s), and appropriate signals for modulating cell signalling. The subcellular localization of severe acute respiratory syndrome coronavirus (SARS-CoV) N protein was studied. In infected cells, SARS-CoV N protein localized exclusively to the cytoplasm. In contrast to the avian coronavirus N protein, overexpressed SARS-CoV N protein remained principally localized to the cytoplasm, with very few cells exhibiting nucleolar localization. Bioinformatic analysis and deletion mutagenesis coupled to confocal microscopy and live-cell imaging, revealed that SARS-CoV N protein regions I and III contained nuclear localization signals and region II contained a nucleolar retention signal. However, cytoplasmic localization was directed by region III and was the dominant localization signal in the protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81076-0
2005-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/12/3303.html?itemId=/content/journal/jgv/10.1099/vir.0.81076-0&mimeType=html&fmt=ahah

References

  1. Andersen J. S., Lam Y. W., Leung A. K., Ong S. E., Lyon C. E., Lamond A. I., Mann M. 2005; Nucleolar proteome dynamics. Nature 433:77–83 [CrossRef]
    [Google Scholar]
  2. Burich R., Lei M. 2003; Two bipartite NLSs mediate constitutive nuclear localization of Mcm10. Curr Genet 44:195–201 [CrossRef]
    [Google Scholar]
  3. Calvo E., Escors D., Lopez J. A., Gonzalez J. M., Alvarez A., Arza E., Enjuanes L. 2005; Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J Gen Virol 86:2255–2267 [CrossRef]
    [Google Scholar]
  4. Carmo-Fonseca M., Mendes-Soares L., Campos I. 2000; To be or not to be in the nucleolus. Nat Cell Biol 2:E107–E112 [CrossRef]
    [Google Scholar]
  5. Chen H., Wurm T., Britton P., Brooks G., Hiscox J. A. 2002; Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J Virol 76:5233–5250 [CrossRef]
    [Google Scholar]
  6. Chen H., Gill A., Dove B. K., Emmett S. R., Kemp F. C., Ritchie M. A., Dee M., Hiscox J. A. 2005; Mass spectroscopic characterisation of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding using surface plasmon resonance. J Virol 79:1164–1179 [CrossRef]
    [Google Scholar]
  7. Gustin K. E. 2003; Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex. Virus Res 95:35–44 [CrossRef]
    [Google Scholar]
  8. Gustin K. E., Sarnow P. 2001; Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex formation. EMBO J 20:240–249 [CrossRef]
    [Google Scholar]
  9. Gustin K. E., Sarnow P. 2002; Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 76:8787–8796 [CrossRef]
    [Google Scholar]
  10. Haffar O. K., Popov S., Dubrovsky L., Agostini I., Tang H., Pushkarsky T., Nadler S. G., Bukrinsky M. 2000; Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J Mol Biol 299:359–368 [CrossRef]
    [Google Scholar]
  11. He R., Leeson A., Andonov A. 8 other authors 2003; Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 311:870–876 [CrossRef]
    [Google Scholar]
  12. Hiscox J. A. 2002; Brief review: the nucleolus – a gateway to viral infection?. Arch Virol 147:1077–1089 [CrossRef]
    [Google Scholar]
  13. Hiscox J. A. 2003; The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. Virus Res 95:13–22 [CrossRef]
    [Google Scholar]
  14. Hiscox J. A., Wurm T., Wilson L., Cavanagh D., Britton P., Brooks G. 2001; The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol 75:506–512 [CrossRef]
    [Google Scholar]
  15. Jayaram J., Youn S., Collisson E. W. 2005; The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates. Virology 339:127–135 [CrossRef]
    [Google Scholar]
  16. la Cour T., Kiemer L., Molgaard A., Gupta R., Skriver K., Brunak S. 2004; Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536 [CrossRef]
    [Google Scholar]
  17. Lam Y. W., Trinkle-Mulcahy L., Lamond A. I. 2005; The nucleolus. J Cell Sci 118:1335–1337 [CrossRef]
    [Google Scholar]
  18. Lee C. H., Chang S. C., Chen C. J., Chang M. F. 1998; The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J Biol Chem 273:7650–7656 [CrossRef]
    [Google Scholar]
  19. Lundberg M., Johansson M. 2001; Is VP22 nuclear homing an artifact?. Nat Biotechnol 19:713 [CrossRef]
    [Google Scholar]
  20. Lundberg M., Johansson M. 2002; Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291:367–371 [CrossRef]
    [Google Scholar]
  21. Luo M., Pang C. W., Gerken A. E., Brock T. G. 2004; Multiple nuclear localization sequences allow modulation of 5-lipoxygenase nuclear import. Traffic 5:847–854 [CrossRef]
    [Google Scholar]
  22. Luo H., Chen Q., Chen J., Chen K., Shen X., Jiang H. 2005; The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett 579:2623–2628 [CrossRef]
    [Google Scholar]
  23. Macara I. G. 2001; Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594 [CrossRef]
    [Google Scholar]
  24. Marra M. A., Jones S. J. M., Astell C. R. 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  25. Nakai K., Horton P. 1999; psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36 [CrossRef]
    [Google Scholar]
  26. Ning Q., Lakatoo S., Liu M. F., Yang W. M., Wang Z. M., Phillips M. J., Levy G. A. 2003; Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 α . J Biol Chem 278:15541–15549 [CrossRef]
    [Google Scholar]
  27. Ossareh-Nazari B., Gwizdek C., Dargemont C. 2001; Protein export from the nucleus. Traffic 2:684–689 [CrossRef]
    [Google Scholar]
  28. Parker M. M., Masters P. S. 1990; Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis-virus suggests a three domain-structure for the nucleocapsid protein. Virology 179:463–468 [CrossRef]
    [Google Scholar]
  29. Qinfen Z., Jinming C., Xiaojun H., Huanying Z., Jicheng H., Ling F., Kunpeng L., Jingqiang Z. 2004; The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol 73:332–337 [CrossRef]
    [Google Scholar]
  30. Risco C., Anton I. M., Enjuanes L., Carrascosa J. L. 1996; The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70:4773–4777
    [Google Scholar]
  31. Rowland R. R., Kerwin R., Kuckleburg C., Sperlich A., Benfield D. A. 1999; The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res 64:1–12 [CrossRef]
    [Google Scholar]
  32. Sheval E. V., Polzikov M. A., Olson M. O., Zatsepina O. V. 2005; A higher concentration of an antigen within the nucleolus may prevent its proper recognition by specific antibodies. Eur J Histochem 49:117–123
    [Google Scholar]
  33. Stelz G., Rucker E., Rosorius O., Meyer G., Stauber R. H., Spatz M., Eibl M. M., Hauber J. 2002; Identification of two nuclear import signals in the α -gene product ICP22 of herpes simplex virus 1. Virology 295:360–370 [CrossRef]
    [Google Scholar]
  34. Surjit M., Liu B., Jameel S., Chow V. T., Lal S. K. 2004; The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem J 383:13–18 [CrossRef]
    [Google Scholar]
  35. Thiry M., Lafontaine D. L. 2005; Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 15:194–199 [CrossRef]
    [Google Scholar]
  36. Tijms M. A., van der Meer Y., Snijder E. J. 2002; Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. J Gen Virol 83:795–800
    [Google Scholar]
  37. Tsai R. Y. L., McKay R. D. G. 2005; A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol 168:179–184 [CrossRef]
    [Google Scholar]
  38. Wurm T., Chen H., Hodgson T., Britton P., Brooks G., Hiscox J. A. 2001; Localization to the nucleolus is a common feature of coronavirus nucleoproteins and the protein may disrupt host cell division. J Virol 75:9345–9356 [CrossRef]
    [Google Scholar]
  39. Yoo D., Wootton S. K., Li G., Song C., Rowland R. R. 2003; Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin. J Virol 77:12173–12183 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81076-0
Loading
/content/journal/jgv/10.1099/vir.0.81076-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error