1887

Abstract

Interferons (IFNs) encode a family of secreted proteins that provide the front-line defence against viral infections. It was recently shown that ISG20, a new 3′→5′ exoribonuclease member of the DEDD superfamily of exonucleases, represents a novel antiviral pathway in the mechanism of IFN action. In this report, it was shown that ISG20 expression is rapidly and strongly induced during human immunodeficiency virus type 1 (HIV-1) infection. In addition, it was demonstrated that the replication kinetics of an HIV-1-derived virus expressing the ISG20 protein (HIV-1) was delayed in both CEM cells and peripheral blood mononuclear cells. No antiviral effect was observed in cells overexpressing a mutated ISG20 protein defective in exonuclease activity, suggesting that the antiviral effect was due to the exonuclease activity of ISG20. Paradoxically, despite the antiviral activity of ISG20 protein, virus rescue observed in HIV-1-infected cells was not due to mutation or partial deletion of the ISG20 transgene, suggesting that the virus was able to counteract the cellular defences. In addition, HIV-1-induced apoptosis was significantly reduced in HIV-1-infected cells suggesting that emergence of HIV-1 was associated with the inhibition of HIV-1-induced apoptosis. Altogether, these data reflect the ineffectiveness of virus replication in cells overexpressing ISG20 and demonstrate that ISG20 represents a new factor in the IFN-mediated antiviral barrier against HIV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81074-0
2005-08-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862221.html?itemId=/content/journal/jgv/10.1099/vir.0.81074-0&mimeType=html&fmt=ahah

References

  1. Baca, L. M., Genis, P., Kalvakolanu, D., Sen, G., Meltzer, M. S., Zhou, A., Silverman, R. & Gendelman, H. E. ( 1994; ). Regulation of interferon-α-inducible cellular genes in human immunodeficiency virus-infected monocytes. J Leukoc Biol 55, 299–309.
    [Google Scholar]
  2. Barber, G. N. ( 2001; ). Host defence, viruses and apoptosis. Cell Death Differ 8, 113–126.[CrossRef]
    [Google Scholar]
  3. Benkirane, M., Neuveut, C., Chun, R. F., Smith, S. M., Samuel, C. E., Gatignol, A. & Jeang, K. T. ( 1997; ). Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J 16, 611–624.[CrossRef]
    [Google Scholar]
  4. Bolt, G., Berg, K. & Blixenkrone-Moller, M. ( 2002; ). Measles virus-induced modulation of host-cell gene expression. J Gen Virol 83, 1157–1165.
    [Google Scholar]
  5. Brand, S. R., Kobayashi, R. & Mathews, M. B. ( 1997; ). The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J Biol Chem 272, 8388–8395.[CrossRef]
    [Google Scholar]
  6. Cai, R., Carpick, B., Chun, R. F., Jeang, K. T. & Williams, B. R. ( 2000; ). HIV-I TAT inhibits PKR activity by both RNA-dependent and RNA-independent mechanisms. Arch Biochem Biophys 373, 361–367.[CrossRef]
    [Google Scholar]
  7. Chang, Y. E. & Laimins, L. A. ( 2001; ). Interferon-inducible genes are major targets of human papillomavirus type 31: insights from microarray analysis. Dis Markers 17, 139–142.[CrossRef]
    [Google Scholar]
  8. Charneau, P., Mirambeau, G., Roux, P., Paulous, S., Buc, H. & Clavel, F. ( 1994; ). HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241, 651–662.[CrossRef]
    [Google Scholar]
  9. Cheung, C. Y., Poon, L. L., Lau, A. S., Luk, W., Lau, Y. L., Shortridge, K. F., Gordon, S., Guan, Y. & Peiris, J. S. ( 2002; ). Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360, 1831–1837.[CrossRef]
    [Google Scholar]
  10. Clemens, M. J. & Elia, A. ( 1997; ). The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17, 503–524.[CrossRef]
    [Google Scholar]
  11. Coccia, E. M., Krust, B. & Hovanessian, A. G. ( 1994; ). Specific inhibition of viral protein synthesis in HIV-infected cells in response to interferon treatment. J Biol Chem 269, 23087–23094.
    [Google Scholar]
  12. Corbeil, J., Sheeter, D., Genini, D. & 12 other authors ( 2001; ). Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 11, 1198–1204.[CrossRef]
    [Google Scholar]
  13. D'Acquisto, F. & Ghosh, S. ( 2001; ). PACT and PKR: turning on NF-κB in the absence of virus. Sci STKE 2001, RE1.
    [Google Scholar]
  14. Daher, A., Longuet, M., Dorin, D. & 9 other authors ( 2001; ). Two dimerization domains in the trans-activation response RNA-binding protein (TRBP) individually reverse the protein kinase R inhibition of HIV-1 long terminal repeat expression. J Biol Chem 276, 33899–33905.[CrossRef]
    [Google Scholar]
  15. Demarchi, F., Gutierrez, M. I. & Giacca, M. ( 1999; ). Human immunodeficiency virus type 1 tat protein activates transcription factor NF-κB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol 73, 7080–7086.
    [Google Scholar]
  16. de Veer, M. J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J. M., Silverman, R. H. & Williams, B. R. ( 2001; ). Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69, 912–920.
    [Google Scholar]
  17. Dhawan, S., Heredia, A., Wahl, L. M., Epstein, J. S., Meltzer, M. S. & Hewlett, I. K. ( 1995; ). Interferon-γ-induced downregulation of CD4 inhibits the entry of human immunodeficiency virus type-1 in primary monocytes. Pathobiology 63, 93–99.[CrossRef]
    [Google Scholar]
  18. Espert, L., Degols, G., Gongora, C., Blondel, D., Williams, B. R., Silverman, R. H. & Mechti, N. ( 2003a; ). ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J Biol Chem 278, 16151–16158.[CrossRef]
    [Google Scholar]
  19. Espert, L., Gongora, C. & Mechti, N. ( 2003b; ). Interferon: antiviral mechanisms and viral escape (in French). Bull Cancer 90, 131–141.
    [Google Scholar]
  20. Gale, M., Jr & Katze, M. G. ( 1998; ). Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 78, 29–46.[CrossRef]
    [Google Scholar]
  21. Gatignol, A., Buckler-White, A., Berkhout, B. & Jeang, K. T. ( 1991; ). Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251, 1597–1600.[CrossRef]
    [Google Scholar]
  22. Gendelman, H. E., Baca, L., Turpin, J. A., Kalter, D. C., Hansen, B. D., Orenstein, J. M., Friedman, R. M. & Meltzer, M. S. ( 1990a; ). Restriction of HIV replication in infected T cells and monocytes by interferon-α. AIDS Res Hum Retroviruses 6, 1045–1049.
    [Google Scholar]
  23. Gendelman, H. E., Baca, L. M., Turpin, J., Kalter, D. C., Hansen, B., Orenstein, J. M., Dieffenbach, C. W., Friedman, R. M. & Meltzer, M. S. ( 1990b; ). Regulation of HIV replication in infected monocytes by IFN-α. Mechanisms for viral restriction. J Immunol 145, 2669–2676.
    [Google Scholar]
  24. Gil, J. & Esteban, M. ( 2000; ). Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.[CrossRef]
    [Google Scholar]
  25. Gongora, C., David, G., Pintard, L., Tissot, C., Hua, T. D., Dejean, A. & Mechti, N. ( 1997; ). Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J Biol Chem 272, 19457–19463.[CrossRef]
    [Google Scholar]
  26. Gongora, C., Degols, G., Espert, L., Hua, T. D. & Mechti, N. ( 2000; ). A unique ISRE, in the TATA-less human Isg20 promoter, confers IRF-1-mediated responsiveness to both interferon type I and type II. Nucleic Acids Res 28, 2333–2341.[CrossRef]
    [Google Scholar]
  27. Gougeon, M. L. ( 2003; ). Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3, 392–404.[CrossRef]
    [Google Scholar]
  28. Gurer, C., Cimarelli, A. & Luban, J. ( 2002; ). Specific incorporation of heat shock protein 70 family members into primate lentiviral virions. J Virol 76, 4666–4670.[CrossRef]
    [Google Scholar]
  29. Hansen, B. D., Nara, P. L., Maheshwari, R. K., Sidhu, G. S., Bernbaum, J. G., Hoekzema, D., Meltzer, M. S. & Gendelman, H. E. ( 1992; ). Loss of infectivity by progeny virus from alpha interferon-treated human immunodeficiency virus type 1-infected T cells is associated with defective assembly of envelope gp120. J Virol 66, 7543–7548.
    [Google Scholar]
  30. Honda, Y., Rogers, L., Nakata, K., Zhao, B. Y., Pine, R., Nakai, Y., Kurosu, K., Rom, W. N. & Weiden, M. ( 1998; ). Type I interferon induces inhibitory 16-kD CCAAT/enhancer binding protein (C/EBP)β, repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 188, 1255–1265.[CrossRef]
    [Google Scholar]
  31. Huang, L. M., Joshi, A., Willey, R., Orenstein, J. & Jeang, K. T. ( 1994; ). Human immunodeficiency viruses regulated by alternative trans-activators: genetic evidence for a novel non-transcriptional function of Tat in virion infectivity. EMBO J 13, 2886–2896.
    [Google Scholar]
  32. Izmailova, E., Bertley, F. M., Huang, Q., Makori, N., Miller, C. J., Young, R. A. & Aldovini, A. ( 2003; ). HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med 9, 191–197.[CrossRef]
    [Google Scholar]
  33. Karpov, A. V. ( 2001; ). Endogenous and exogenous interferons in HIV-infection. Eur J Med Res 6, 507–524.
    [Google Scholar]
  34. Katze, M. G., He, Y. & Gale, M., Jr ( 2002; ). Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675–687.[CrossRef]
    [Google Scholar]
  35. Korth, M. J. & Katze, M. G. ( 2002; ). Unlocking the mysteries of virus–host interactions: does functional genomics hold the key? Ann N Y Acad Sci 975, 160–168.[CrossRef]
    [Google Scholar]
  36. Kumar, M. & Carmichael, G. G. ( 1998; ). Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62, 1415–1434.
    [Google Scholar]
  37. Maitra, R. K. & Silverman, R. H. ( 1998; ). Regulation of human immunodeficiency virus replication by 2′,5′-oligoadenylate-dependent RNase L. J Virol 72, 1146–1152.
    [Google Scholar]
  38. Marin, M., Rose, K. M., Kozak, S. L. & Kabat, D. ( 2003; ). HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9, 1398–1403.[CrossRef]
    [Google Scholar]
  39. Martinand, C., Montavon, C., Salehzada, T., Silhol, M., Lebleu, B. & Bisbal, C. ( 1999; ). RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2-5A/RNase L pathway in human T cells. J Virol 73, 290–296.
    [Google Scholar]
  40. Mattei, M. G., Tissot, C., Gongora, C. & Mechti, N. ( 1997; ). Assignment of ISG20 encoding a new interferon-induced PML nuclear body-associated protein, to chromosome 15q26 by in situ hybridization. Cytogenet Cell Genet 79, 286–287.[CrossRef]
    [Google Scholar]
  41. McMillan, N. A., Chun, R. F., Siderovski, D. P. & 7 other authors ( 1995; ). HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase, PKR. Virology 213, 413–424.[CrossRef]
    [Google Scholar]
  42. Mehle, A., Strack, B., Ancuta, P., Zhang, C., McPike, M. & Gabuzda, D. ( 2004; ). Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 279, 7792–7798.[CrossRef]
    [Google Scholar]
  43. Meurs, E., Chong, K., Galabru, J., Thomas, N. S., Kerr, I. M., Williams, B. R. & Hovanessian, A. G. ( 1990; ). Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390.[CrossRef]
    [Google Scholar]
  44. Meurs, E. F., Watanabe, Y., Kadereit, S., Barber, G. N., Katze, M. G., Chong, K., Williams, B. R. & Hovanessian, A. G. ( 1992; ). Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J Virol 66, 5805–5814.
    [Google Scholar]
  45. Meylan, P. R., Guatelli, J. C., Munis, J. R., Richman, D. D. & Kornbluth, R. S. ( 1993; ). Mechanisms for the inhibition of HIV replication by interferons-α, -β, and -γ in primary human macrophages. Virology 193, 138–148.[CrossRef]
    [Google Scholar]
  46. Muto, N. F., Martinand-Mari, C., Adelson, M. E. & Suhadolnik, R. J. ( 1999; ). Inhibition of replication of reactivated human immunodeficiency virus type 1 (HIV-1) in latently infected U1 cells transduced with an HIV-1 long terminal repeat-driven PKR cDNA construct. J Virol 73, 9021–9028.
    [Google Scholar]
  47. Nguyen, L. H., Espert, L., Mechti, N. & Wilson, D. M., III ( 2001; ). The human interferon and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 40, 7174–7179.[CrossRef]
    [Google Scholar]
  48. Ott, D. E., Coren, L. V., Kane, B. P., Busch, L. K., Johnson, D. G., Sowder, R. C., II, Chertova, E. N., Arthur, L. O. & Henderson, L. E. ( 1996; ). Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J Virol 70, 7734–7743.
    [Google Scholar]
  49. Ott, D. E., Coren, L. V., Johnson, D. G. & 7 other authors ( 2000; ). Actin-binding cellular proteins inside human immunodeficiency virus type 1. Virology 266, 42–51.[CrossRef]
    [Google Scholar]
  50. Pantaleo, G. & Fauci, A. S. ( 1995; ). Apoptosis in HIV infection. Nat Med 1, 118–120.[CrossRef]
    [Google Scholar]
  51. Pitha, P. M. ( 1991; ). Multiple effects of interferon on HIV-1 replication. J Interferon Res 11, 313–318.[CrossRef]
    [Google Scholar]
  52. Pitha, P. M. ( 1994; ). Multiple effects of interferon on the replication of human immunodeficiency virus type 1. Antiviral Res 24, 205–219.[CrossRef]
    [Google Scholar]
  53. Player, M. R. & Torrence, P. F. ( 1998; ). The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther 78, 55–113.[CrossRef]
    [Google Scholar]
  54. Poli, G., Orenstein, J. M., Kinter, A., Folks, T. M. & Fauci, A. S. ( 1989; ). Interferon-α but not AZT suppresses HIV expression in chronically infected cell lines. Science 244, 575–577.[CrossRef]
    [Google Scholar]
  55. Samuel, C. E. ( 2001; ). Antiviral actions of interferons. Clin Microbiol Rev 14, 778–809.[CrossRef]
    [Google Scholar]
  56. Selliah, N. & Finkel, T. H. ( 2001; ). Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Differ 8, 127–136.[CrossRef]
    [Google Scholar]
  57. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. ( 2002; ). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650.[CrossRef]
    [Google Scholar]
  58. Sheehy, A. M., Gaddis, N. C. & Malim, M. H. ( 2003; ). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9, 1404–1407.[CrossRef]
    [Google Scholar]
  59. Shirazi, Y. & Pitha, P. M. ( 1992; ). Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J Virol 66, 1321–1328.
    [Google Scholar]
  60. Shirazi, Y. & Pitha, P. M. ( 1993; ). Interferon α-mediated inhibition of human immunodeficiency virus type 1 provirus synthesis in T-cells. Virology 193, 303–312.[CrossRef]
    [Google Scholar]
  61. Shirazi, Y. & Pitha, P. M. ( 1998; ). Interferon downregulates CXCR4 (fusin) gene expression in peripheral blood mononuclear cells. J Hum Virol 1, 69–76.
    [Google Scholar]
  62. Simmen, K. A., Singh, J., Luukkonen, B. G., Lopper, M., Bittner, A., Miller, N. E., Jackson, M. R., Compton, T. & Fruh, K. ( 2001; ). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc Natl Acad Sci U S A 98, 7140–7145.[CrossRef]
    [Google Scholar]
  63. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. ( 1998; ). How cells respond to interferons. Annu Rev Biochem 67, 227–264.[CrossRef]
    [Google Scholar]
  64. Tanaka, N., Sato, M., Lamphier, M. S., Nozawa, H., Oda, E., Noguchi, S., Schreiber, R. D., Tsujimoto, Y. & Taniguchi, T. ( 1998; ). Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 3, 29–37.[CrossRef]
    [Google Scholar]
  65. van 't Wout, A. B., Lehrman, G. K., Mikheeva, S. A., O'Keeffe, G. C., Katze, M. G., Bumgarner, R. E., Geiss, G. K. & Mullins, J. I. ( 2003; ). Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J Virol 77, 1392–1402.[CrossRef]
    [Google Scholar]
  66. Varela, N., Munoz-Pinedo, C., Ruiz-Ruiz, C., Robledo, G., Pedroso, M. & Lopez-Rivas, A. ( 2001; ). Interferon-γ sensitizes human myeloid leukemia cells to death receptor-mediated apoptosis by a pleiotropic mechanism. J Biol Chem 276, 17779–17787.[CrossRef]
    [Google Scholar]
  67. Williams, B. R. ( 2001; ). Signal integration via PKR. Sci STKE 2001, RE2.
    [Google Scholar]
  68. Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P. & Yu, X. F. ( 2003; ). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060.[CrossRef]
    [Google Scholar]
  69. Zhou, A., Hassel, B. A. & Silverman, R. H. ( 1993; ). Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72, 753–765.[CrossRef]
    [Google Scholar]
  70. Zimmerman, C., Klein, K. C., Kiser, P. K., Singh, A. R., Firestein, B. L., Riba, S. C. & Lingappa, J. R. ( 2002; ). Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415, 88–92.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81074-0
Loading
/content/journal/jgv/10.1099/vir.0.81074-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error