1887

Abstract

Many research groups have developed targeted vectors for gene therapy based on Moloney murine leukemia virus (MoMLV). Despite proper binding of the targeted vector to the target molecule, little or no infectivity of human cells expressing the target molecule has been achieved in most studies. One of the reasons for this lack of infectivity may be steric hindrance within the targeted envelope glycoprotein (Env), impeding the conformational changes required for fusion and infection. Here, attempts were made to solve this problem by mutating key residues within Env of two targeted MoMLV-based vectors, MoMLV–E-Sel and MoMLV–FBP. Selection of key residues was based on an Env with reduced threshold for fusion, that of the CD4-independent human immunodeficiency virus type 2 isolate ROD/B. It was shown here that vectors bearing MoMLV–FBP Env with a V512M substitution had higher titres and faster kinetics of entry than vectors bearing parental targeted Env proteins. This could be due to the partial release of steric constraints that result in an Env with a reduced threshold for fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81057-0
2005-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862469.html?itemId=/content/journal/jgv/10.1099/vir.0.81057-0&mimeType=html&fmt=ahah

References

  1. Ager S., Nilson B. H., Morling F. J., Peng K. W., Cosset F.-L., Russell S. J. 1996; Retroviral display of antibody fragments: interdomain spacing strongly influences vector infectivity. Hum Gene Ther 7:2157–2164 [CrossRef]
    [Google Scholar]
  2. Bae Y., Kingsman S. M., Kingsman A. J. 1997; Functional dissection of the Moloney murine leukemia virus envelope protein gp70. J Virol 71:2092–2099
    [Google Scholar]
  3. Barnett A. L., Cunningham J. M. 2001; Receptor binding transforms the surface subunit of the mammalian C-type retrovirus envelope protein from an inhibitor to an activator of fusion. J Virol 75:9096–9105 [CrossRef]
    [Google Scholar]
  4. Barnett A. L., Davey R. A., Cunningham J. M. 2001; Modular organization of the Friend murine leukemia virus envelope protein underlies the mechanism of infection. Proc Natl Acad Sci U S A 98:4113–4118 [CrossRef]
    [Google Scholar]
  5. Battini J.-L., Danos O., Heard J. M. 1995; Receptor-binding domain of murine leukemia virus envelope glycoproteins. J Virol 69:713–719
    [Google Scholar]
  6. Benedict C. A., Tun R. Y. M., Rubinstein D. B., Guillaume T., Cannon P. M., Anderson W. F. 1999; Targeting retroviral vectors to CD34-expressing cells: binding to CD34 does not catalyze virus-cell fusion. Hum Gene Ther 10:545–557 [CrossRef]
    [Google Scholar]
  7. Carr C. M., Kim P. S. 1993; A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832 [CrossRef]
    [Google Scholar]
  8. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273 [CrossRef]
    [Google Scholar]
  9. Clapham P. R., McKnight A., Weiss R. A. 1992; Human immunodeficiency virus type 2 infection and fusion of CD4-negative human cell lines: induction and enhancement by soluble CD4. J Virol 66:3531–3537
    [Google Scholar]
  10. Cosset F.-L., Takeuchi Y., Battini J. L., Weiss R. A., Collins M. K. L. 1995a; High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436
    [Google Scholar]
  11. Cosset F.-L., Morling F. J., Takeuchi Y., Weiss R. A., Collins M. K. L., Russell S. J. 1995b; Retroviral retargeting by envelopes expressing an N-terminal binding domain. J Virol 69:6314–6322
    [Google Scholar]
  12. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439 [CrossRef]
    [Google Scholar]
  13. Denesvre C., Sonigo P., Corbin A., Ellerbrok H., Sitbon M. 1995; Influence of transmembrane domains on the fusogenic abilities of human and murine leukemia retrovirus envelopes. J Virol 69:4149–4157
    [Google Scholar]
  14. Fass D., Harrison S. C., Kim P. S. 1996; Retrovirus envelope domain at 1·7 Å resolution. Nat Struct Biol 3:465–469 [CrossRef]
    [Google Scholar]
  15. Fielding A. K., Maurice M., Morling F. J., Cosset F.-L., Russell S. J. 1998; Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells. Blood 91:1802–1809
    [Google Scholar]
  16. Harbury P. B., Kim P. S., Alber T. 1994; Crystal structure of an isoleucine-zipper trimer. Nature 371:80–83 [CrossRef]
    [Google Scholar]
  17. Lavillette D., Maurice M., Roche C., Russell S. J., Sitbon M., Cosset F.-L. 1998; A proline-rich motif downstream of the receptor binding domain modulates conformation and fusogenicity of murine retroviral envelopes. J Virol 72:9955–9965
    [Google Scholar]
  18. Lavillette D., Ruggieri A., Russell S. J., Cosset F.-L. 2000; Activation of a cell entry pathway common to type C mammalian retroviruses by soluble envelope fragments. J Virol 74:295–304 [CrossRef]
    [Google Scholar]
  19. Lavillette D., Boson B., Russell S. J., Cosset F.-L. 2001; Activation of membrane fusion by murine leukemia viruses is controlled in cis or in trans by interactions between the receptor-binding domain and a conserved disulfide loop of the carboxy terminus of the surface glycoprotein. J Virol 75:3685–3695 [CrossRef]
    [Google Scholar]
  20. Lorimer I. A. J., Lavictoire S. J. 2000; Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods 237:147–157 [CrossRef]
    [Google Scholar]
  21. Lovejoy B., Choe S., Cascio D., McRorie D. K., DeGrado W. F., Eisenberg D. 1993; Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 259:1288–1293 [CrossRef]
    [Google Scholar]
  22. Marin M., Noël D., Valsesia-Wittman S., Brockly F., Etienne-Julan M., Russell S., Cosset F.-L., Piechaczyk M. 1996; Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J Virol 70:2957–2962
    [Google Scholar]
  23. Martin F., Kupsch J., Takeuchi Y., Russell S., Cosset F.-L., Collins M. 1998; Retroviral vector targeting to melanoma cells by single-chain antibody incorporation in envelope. Hum Gene Ther 9:737–746 [CrossRef]
    [Google Scholar]
  24. Pizzato M., Blair E. D., Fling M., Kopf J., Tomassetti A., Weiss R. A., Takeuchi Y. 2001; Evidence for nonspecific adsorption of targeted retrovirus vector particles to cells. Gene Ther 8:1088–1096 [CrossRef]
    [Google Scholar]
  25. Ramsdale E. E., Kingsman S. M., Kingsman A. J. 1996; The “putative” leucine zipper region of murine leukemia virus transmembrane protein (P15e) is essential for viral infectivity. Virology 220:100–108 [CrossRef]
    [Google Scholar]
  26. Reeves J. D., Schulz T. F. 1997; The CD4-independent tropism of human immunodeficiency virus type 2 involves several regions of the envelope protein and correlates with a reduced activation threshold for envelope-mediated fusion. J Virol 71:1453–1465
    [Google Scholar]
  27. Russell S. J., Hawkins R. E., Winter G. 1993; Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res 21:1081–1085 [CrossRef]
    [Google Scholar]
  28. Viejo-Borbolla A., Pizzato M., Blair E. D., Schulz T. F. 2005; Insertion of targeting domains into the envelope glycoprotein of Moloney murine leukemia virus (MoMLV)-based vectors modulates the route of mCAT-1-mediated viral entry. Virus Res 108:45–55 [CrossRef]
    [Google Scholar]
  29. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. 1997; Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430 [CrossRef]
    [Google Scholar]
  30. Zavorotinskaya T., Albritton L. M. 1999a; A hydrophobic patch in ecotropic murine leukemia virus envelope protein is the putative binding site for a critical tyrosine residue on the cellular receptor. J Virol 73:10164–10172
    [Google Scholar]
  31. Zavorotinskaya T., Albritton L. M. 1999b; Suppression of a fusion defect by second site mutations in the ecotropic murine leukemia virus surface protein. J Virol 73:5034–5042
    [Google Scholar]
  32. Zhao Y., Zhu L., Benedict C. A., Chen D., Anderson W. F., Cannon P. M. 1998; Functional domains in the retroviral transmembrane protein. J Virol 72:5392–5398
    [Google Scholar]
  33. Zhao Y., Zhu L., Lee S., Li L., Chang E., Soong N.-W., Douer D., Anderson W. F. 1999; Identification of the block in targeted retroviral-mediated gene transfer. Proc Natl Acad Sci U S A 96:4005–4010 [CrossRef]
    [Google Scholar]
  34. Zhu N.-L., Cannon P. M., Chen D., Anderson W. F. 1998; Mutational analysis of the fusion peptide of Moloney murine leukemia virus transmembrane protein p15E. J Virol 72:1632–1639
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81057-0
Loading
/content/journal/jgv/10.1099/vir.0.81057-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error