Trypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins Free

Abstract

The rotavirus capsid is made up of three concentric protein layers. The outer layer, consisting of VP7 and VP4, is lost during virus entry into the host cell. Rotavirus field isolates can be adapted to high-titre growth in tissue culture by treatment with trypsin and by supplementing the culture medium with trypsin, which cleaves VP4 into two fragments, VP8* and VP5*. It is known that protease inhibitors reduce the replication of rotavirus and and also diminish disease symptoms in a mouse model. To clarify the molecular basis of these observations, a series of assays were conducted on purified rotavirus particles grown in the presence of trypsin. Results of HPLC and mass spectrometry followed by N-terminal sequencing showed that viral particles contain molecules of trypsin. When associated with triple-layer particles (TLPs), trypsin is inactive and not accessible to protease inhibitors, such as aprotinin. When the outer layer is solubilized by calcium-chelating agents, VP5*, VP8* and VP7 are released and the associated trypsin is activated, allowing cleavage of the viral capsid proteins, as well as other exogenous proteins. It is shown that addition of trypsin inhibitors significantly reduces synthesis of viral mRNA and viral proteins in cells and has a major inhibitory effect if present when virus enters the cell. These data indicate that incorporation of trypsin into rotavirus particles may enhance its infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81045-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3143.html?itemId=/content/journal/jgv/10.1099/vir.0.81045-0&mimeType=html&fmt=ahah

References

  1. Charpilienne A., Abad M. J., Michelangeli F., Alvarado F., Vasseur M., Cohen J., Ruiz M. C. 1997; Solubilized and cleaved VP7, the outer glycoprotein of rotavirus, induces permeabilization of cell membrane vesicles. J Gen Virol 78:1367–1371
    [Google Scholar]
  2. Chemello M. E., Aristimuno O. C., Michelangeli F., Ruiz M. C. 2002; Requirement for vacuolar H+-ATPase activity and Ca2+ gradient during entry of rotavirus into MA104 cells. J Virol 76:13083–13087 [CrossRef]
    [Google Scholar]
  3. Ciarlet M., Hidalgo M., Gorziglia M., Liprandi F. 1994; Characterization of neutralization epitopes on the VP7 surface protein of serotype G11 porcine rotaviruses. J Gen Virol 75:1867–1873 [CrossRef]
    [Google Scholar]
  4. Clark S. M., Roth J. R., Clark M. L., Barnett B. B., Spendlove R. S. 1981; Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J Virol 39:816–822
    [Google Scholar]
  5. Cohen J., Laporte J., Charpilienne A., Scherrer R. 1979; Activation of rotavirus RNA polymerase by calcium chelation. Arch Virol 60:177–186 [CrossRef]
    [Google Scholar]
  6. Crawford S. E., Mukherjee S. K., Estes M. K., Lawton J. A., Shaw A. L., Ramig R. F., Prasad B. V. 2001; Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75:6052–6061 [CrossRef]
    [Google Scholar]
  7. Denisova E., Dowling W., LaMonica R., Shaw R., Scarlata S., Ruggeri F., Mackow E. R. 1999; Rotavirus capsid protein VP5* permeabilizes membranes. J Virol 73:3147–3153
    [Google Scholar]
  8. Dormitzer P. R., Nason E. B., Prasad B. V., Harrison S. C. 2004; Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430:1053–1058 [CrossRef]
    [Google Scholar]
  9. Estes M. K., Graham D. Y., Smith E. M., Gerba C. P. 1979; Rotavirus stability and inactivation. J Gen Virol 43:403–409 [CrossRef]
    [Google Scholar]
  10. Kaljot K. T., Shaw R. D., Rubin D. H., Greenberg H. B. 1988; Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 62:1136–1144
    [Google Scholar]
  11. Katyal R., Rana S. V., Ojha S., Vaiphei K., Singh V., Singh K. 2001; Soybean trypsin inhibitor confers protection against rotavirus infection in infant mice. Trop Gastroenterol 22:207–210
    [Google Scholar]
  12. Klenk H. D., Rott R., Orlich M., Blodorn J. 1975; Activation of influenza A viruses by trypsin treatment. Virology 68:426–439 [CrossRef]
    [Google Scholar]
  13. Liprandi F., Moros Z., Gerder M., Ludert J. E., Pujol F. H., Ruiz M. C., Michelangeli F., Charpilienne A., Cohen J. 1997; Productive penetration of rotavirus in cultured cells induces coentry of the translation inhibitor alpha-sarcin. Virology 237:430–438 [CrossRef]
    [Google Scholar]
  14. Lopez S., Arias C. F. 2004; Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12:271–278 [CrossRef]
    [Google Scholar]
  15. Ludert J. E., Krishnaney A. A., Burns J. W., Vo P. T., Greenberg H. B. 1996; Cleavage of rotavirus VP4 in vivo . J Gen Virol 77:391–395 [CrossRef]
    [Google Scholar]
  16. Ludert J. E., Ruiz M. C., Hidalgo C., Liprandi F. 2002; Antibodies to rotavirus outer capsid glycoprotein VP7 neutralize infectivity by inhibiting virion decapsidation. J Virol 76:6643–6651 [CrossRef]
    [Google Scholar]
  17. Mendez I. I., Hermann L. L., Hazelton P. R., Coombs K. M. 2000; A comparative analysis of freon substitutes in the purification of reovirus and calicivirus. J Virol Methods 90:59–67 [CrossRef]
    [Google Scholar]
  18. Obert G., Peiffer I., Servin A. L. 2000; Rotavirus-induced structural and functional alterations in tight junctions of polarized intestinal Caco-2 cell monolayers. J Virol 74:4645–4651 [CrossRef]
    [Google Scholar]
  19. Overbergh L., Valckx D., Waer M., Mathieu C. 1999; Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11:305–312 [CrossRef]
    [Google Scholar]
  20. Parashar U. D., Hummelman E. G., Bresee J. S., Miller M. A., Glass R. I. 2003; Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9:565–572 [CrossRef]
    [Google Scholar]
  21. Poncet D., Cohen J. 1989; A plaque hybridization assay for rotaviruses. J Virol Methods 26:27–33 [CrossRef]
    [Google Scholar]
  22. Prasad B. V., Crawford S., Lawton J. A., Pesavento J., Hardy M., Estes M. K. 2001; Structural studies on gastroenteritis viruses. Novartis Found Symp 238:26–37
    [Google Scholar]
  23. Ruiz M. C., Alonso-Torre S. R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F. 1994; Rotavirus interaction with isolated membrane vesicles. J Virol 68:4009–4016
    [Google Scholar]
  24. Ruiz M. C., Abad M. J., Charpilienne A., Cohen J., Michelangeli F. 1997; Cell lines susceptible to infection are permeabilized by cleaved and solubilized outer layer proteins of rotavirus. J Gen Virol 78:2883–2893
    [Google Scholar]
  25. Ruiz M. C., Cohen J., Michelangeli F. 2000; Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 28:137–149
    [Google Scholar]
  26. Schwartz-Cornil I., Benureau Y., Greenberg H., Hendrickson B. A., Cohen J. 2002; Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J Virol 76:8110–8117 [CrossRef]
    [Google Scholar]
  27. Shah R. B., Palamakula A., Khan M. A. 2004; Cytotoxicity evaluation of enzyme inhibitors and absorption enhancers in Caco-2 cells for oral delivery of salmon calcitonin. J Pharm Sci 93:1070–1082 [CrossRef]
    [Google Scholar]
  28. Vonderfecht S. L., Miskuff R. L., Wee S. B., Sato S., Tidwell R. R., Geratz J. D., Yolken R. H. 1988; Protease inhibitors suppress the in vitro and in vivo replication of rotavirus. J Clin Invest 82:2011–2016 [CrossRef]
    [Google Scholar]
  29. Ye S., Goldsmith E. J. 2001; Serpins and other covalent protease inhibitors. Curr Opin Struct Biol 11:740–745 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81045-0
Loading
/content/journal/jgv/10.1099/vir.0.81045-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed