1887

Abstract

A consensus sequence of the (FCoV) (strain FIPV WSU-79/1146) genome was determined from overlapping cDNA fragments produced by RT-PCR amplification of viral RNA. The genome was found to be 29 125 nt in length, excluding the poly(A) tail. Analysis of the sequence identified conserved open reading frames and revealed an overall genome organization similar to that of other coronaviruses. The genomic RNA was analysed for putative -acting elements and the pattern of subgenomic mRNA synthesis was analysed by Northern blotting. Comparative sequence analysis of the predicted FCoV proteins identified 16 replicase proteins (nsp1–nsp16) and four structural proteins (spike, membrane, envelope and nucleocapsid). Two mRNAs encoding putative accessory proteins were also detected. Phylogenetic analyses confirmed that FIPV WSU-79/1146 belongs to the coronavirus subgroup G1-1. These results confirm and extend previous findings from partial sequence analysis of FCoV genomes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80985-0
2005-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862249.html?itemId=/content/journal/jgv/10.1099/vir.0.80985-0&mimeType=html&fmt=ahah

References

  1. Addie D. D. 2000; Clustering of feline coronaviruses in multicat households. Vet J 159:8–9 [CrossRef]
    [Google Scholar]
  2. Addie D. D., Jarrett J. O. 1992; Feline coronavirus antibodies in cats. Vet Rec 131:202–203
    [Google Scholar]
  3. Addie D. D., Jarrett O. 2001; Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet Rec 148:649–653 [CrossRef]
    [Google Scholar]
  4. Brierley I. 1995; Ribosomal frameshifting on viral RNAs. J Gen Virol 76:1885–1892 [CrossRef]
    [Google Scholar]
  5. de Groot R. J., ter Haar R. J., Horzinek M. C., van der Zeijst B. A. M. 1987; Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79-1146. J Gen Virol 68:995–1002 [CrossRef]
    [Google Scholar]
  6. de Groot R. J., Andeweg A. C., Horzinek M. C., Spaan W. J. M. 1988; Sequence analysis of the 3′ end of the feline coronavirus FIPV 79-1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology 167:370–376 [CrossRef]
    [Google Scholar]
  7. Goebel S. J., Hsue B., Dombrowski T. F., Masters P. S. 2004; Characterization of the RNA components of a putative molecular switch in the 3′ untranslated region of the murine coronavirus genome. J Virol 78:669–682 [CrossRef]
    [Google Scholar]
  8. González J. M., Gomez-Puertas P., Cavanagh D., Gorbalenya A. E., Enjuanes L. 2003; A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae . Arch Virol 148:2207–2235 [CrossRef]
    [Google Scholar]
  9. Gosert R., Kanjanahaluethai A., Egger D., Bienz K., Baker S. C. 2002; RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708 [CrossRef]
    [Google Scholar]
  10. Haijema B. J., Volders H., Rottier P. J. M. 2003; Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol 77:4528–4538 [CrossRef]
    [Google Scholar]
  11. Haijema B. J., Volders H., Rottier P. J. M. 2004; Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 78:3863–3871 [CrossRef]
    [Google Scholar]
  12. Hegyi A., Ziebuhr J. 2002; Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83:595–599
    [Google Scholar]
  13. Herrewegh A. A. P. M., Smeenk I., Horzinek M. C., Rottier P. J. M., de Groot R. J. 1998; Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514
    [Google Scholar]
  14. Pedersen N. C. 1995; An overview of feline enteric coronavirus and infectious peritonitis virus infections. Feline Pract 23:7–20
    [Google Scholar]
  15. Poland A. M., Vennema H., Foley J. E., Pedersen N. C. 1996; Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34:3180–3184
    [Google Scholar]
  16. Prentice E., Jerome W. G., Yoshimori T., Mizushima N., Denison M. R. 2004; Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279:10136–10141 [CrossRef]
    [Google Scholar]
  17. Raman S., Bouma P., Williams G. D., Brian D. A. 2003; Stem-loop III in the 5′ untranslated region is a cis -acting element in bovine coronavirus defective interfering RNA replication. J Virol 77:6720–6730 [CrossRef]
    [Google Scholar]
  18. Sawicki S. G., Sawicki D. L. 1990; Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol 64:1050–1056
    [Google Scholar]
  19. Siddell S. G., Ziebuhr J., Snijder E. J. 2005; Coronaviruses, toroviruses and arteriviruses. In Topley and Wilson's Microbiology and Microbial Infections , 10th edn. Edited by Mahy B. W. J., ter Meulen V. London: Edward Arnold (in press
    [Google Scholar]
  20. Snijder E. J., Bredenbeek P. J., Dobbe J. C. 7 other authors 2003; Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004 [CrossRef]
    [Google Scholar]
  21. Snijder E. J., Siddell S. G., Gorbalenya A. E. 2005; The order Nidovirales. In Topley and Wilson's Microbiology and Microbial Infections , 10th edn. Edited by Mahy B. W. J, ter Meulen V. London: Edward Arnold (in press
    [Google Scholar]
  22. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B. A., Siddell S. G. 1983; Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J 2:1839–1844
    [Google Scholar]
  23. Sparkes A. H., Gruffydd-Jones T. J., Harbour D. A. 1992; Feline coronavirus antibodies in UK cats. Vet Rec 131:223–224
    [Google Scholar]
  24. Thiel V., Rashtchian A., Herold J., Schuster D. M., Guan N., Siddell S. G. 1997; Effective amplification of 20-kb DNA by reverse transcription PCR. Anal Biochem 252:62–70 [CrossRef]
    [Google Scholar]
  25. Thiel V., Ivanov K. A., Putics á. 9 other authors 2003; Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315 [CrossRef]
    [Google Scholar]
  26. Van Den Born E., Gultyaev A. P., Snijder E. J. 2004; Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10:424–437 [CrossRef]
    [Google Scholar]
  27. Vennema H., Poland A., Foley J., Pedersen N. C. 1998; Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243:150–157 [CrossRef]
    [Google Scholar]
  28. Watt N. J., MacIntyre N. J., McOrist S. 1993; An extended outbreak of infectious peritonitis in a closed colony of European wildcats ( Felis silvestris ). J Comp Pathol 108:73–79 [CrossRef]
    [Google Scholar]
  29. Ziebuhr J. 2005; The coronavirus replicase. Curr Top Microbiol Immunol 287:57–94
    [Google Scholar]
  30. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . J Gen Virol 81:853–879
    [Google Scholar]
  31. Zúñiga S., Sola I., Alonso S., Enjuanes L. 2004; Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78:980–994 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80985-0
Loading
/content/journal/jgv/10.1099/vir.0.80985-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error