1887

Abstract

The nucleocapsid (N) protein is the only phosphorylated structural protein of the coronavirus (TGEV). The phosphorylation state and intracellular distribution of TGEV N protein in infected cells were characterized by a combination of techniques including: (i) subcellular fractionation and analysis of tryptic peptides by two-dimensional nano-liquid chromatography, coupled to ion-trap mass spectrometry; (ii) tandem mass-spectrometry analysis of N protein resolved by SDS-PAGE; (iii) Western blotting using two specific antisera for phosphoserine-containing motifs; and (iv) confocal microscopy. A total of four N protein-derived phosphopeptides were detected in mitochondria–Golgi–endoplasmic reticulum–Golgi intermediate compartment (ERGIC)-enriched fractions, including N-protein phosphoserines 9, 156, 254 and 256. Confocal microscopy showed that the N protein found in mitochondria–Golgi–ERGIC fractions localized within the Golgi–ERGIC compartments and not with mitochondria. Phosphorylated N protein was also present in purified virions, containing at least phosphoserines 156 and 256. Coronavirus N proteins showed a conserved pattern of secondary structural elements, including six -strands and four -helices. Whilst serine 9 was present in a non-conserved domain, serines 156, 254 and 256 were localized close to highly conserved secondary structural elements within the central domain of coronavirus N proteins. Serine 156 was highly conserved, whereas no clear homologous sites were found for serines 254 and 256 for other coronavirus N proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80975-0
2005-08-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862255.html?itemId=/content/journal/jgv/10.1099/vir.0.80975-0&mimeType=html&fmt=ahah

References

  1. Almazán F., González J. M., Pénzes Z., Izeta A., Calvo E., Plana-Durán J., Enjuanes L. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 97:5516–5521 [CrossRef]
    [Google Scholar]
  2. Almazán F., Galán C., Enjuanes L. 2004; The nucleoprotein is required for efficient coronavirus genome replication. J Virol 78:12683–12688 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Baric R. S., Nelson G. W., Fleming J. O., Deans R. J., Keck J. G., Casteel N., Stohlman S. A. 1988; Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol 62:4280–4287
    [Google Scholar]
  5. Blom N., Gammeltoft S., Brunak S. 1999; Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362 [CrossRef]
    [Google Scholar]
  6. Bost A. G., Prentice E., Denison M. R. 2001; Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:21–29 [CrossRef]
    [Google Scholar]
  7. Chalmers M. J., Kolch W., Emmett M. R., Marshall A. G., Mischak H. 2004; Identification and analysis of phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 803:111–120 [CrossRef]
    [Google Scholar]
  8. Chang R.-Y., Brian D. A. 1996; cis requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J Virol 70:2201–2207
    [Google Scholar]
  9. Chen H., Gill A., Dove B. K., Emmett S. R., Kemp C. F., Ritchie M. A., Dee M., Hiscox J. A. 2005; Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol 79:1164–1179 [CrossRef]
    [Google Scholar]
  10. Cologna R., Hogue B. 1998; Coronavirus nucleocapsid protein-RNA interactions. Adv Exp Med Biol 440:355–359
    [Google Scholar]
  11. Cologna R., Spagnolo J. F., Hogue B. G. 2000; Identification of nucleocapsid binding sites within coronavirus-defective genomes. Virology 277:235–249 [CrossRef]
    [Google Scholar]
  12. Enjuanes L., Brian D., Cavanagh D. & 9 other authors 2000a; Family Coronaviridae . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses . pp  835–849 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego, CA: Academic Press;
  13. Escors D., Ortego J., Laude H., Enjuanes L. 2001a; The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 75:1312–1324 [CrossRef]
    [Google Scholar]
  14. Escors D., Camafeita E., Ortego J., Laude H., Enjuanes L. 2001b; Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75:12228–12240 [CrossRef]
    [Google Scholar]
  15. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. 1989; Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71 [CrossRef]
    [Google Scholar]
  16. González J. M., Gomez-Puertas P., Cavanagh D., Gorbalenya A. E., Enjuanes L. 2003; A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae . Arch Virol 148:2207–2235 [CrossRef]
    [Google Scholar]
  17. Gosert R., Kanjanahaluethai A., Egger D., Bienz K., Baker S. C. 2002; RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708 [CrossRef]
    [Google Scholar]
  18. Ivanov K. A., Thiel V., Dobbe J. C., van der Meer Y., Snijder E. J., Ziebuhr J. 2004; Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78:5619–5632 [CrossRef]
    [Google Scholar]
  19. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. J Virol 60:131–139
    [Google Scholar]
  20. Krijnse-Locker J., Ericsson M., Rottier P. J., Griffiths G. 1994; Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 124:55–70 [CrossRef]
    [Google Scholar]
  21. Kuo L., Masters P. S. 2002; Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J Virol 76:4987–4999 [CrossRef]
    [Google Scholar]
  22. Laude H., Masters P. S. 1995; The coronavirus nucleocapsid protein. In The Coronaviridae pp  141–163 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  23. Law L. M. J., Everitt J. C., Beatch M. D., Holmes C. F. B., Hobman T. C. 2003; Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 77:1764–1771 [CrossRef]
    [Google Scholar]
  24. Martín Alonso J. M., Balbín M., Garwes D. J., Enjuanes L., Gascón S., Parra F. 1992; Antigenic structure of transmissible gastroenteritis virus nucleoprotein. Virology 188:168–174 [CrossRef]
    [Google Scholar]
  25. Masters P. S. 1992; Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus. Arch Virol 125:141–160 [CrossRef]
    [Google Scholar]
  26. McGuffin L. J., Bryson K., Jones D. T. 2000; The psipred protein structure prediction server. Bioinformatics 16:404–405 [CrossRef]
    [Google Scholar]
  27. Mohandas D. V., Dales S. 1991; Endosomal association of a protein phosphatase with high dephosphorylating activity against a coronavirus nucleocapsid protein. FEBS Lett 282:419–424 [CrossRef]
    [Google Scholar]
  28. Narayanan K., Maeda A., Maeda J., Makino S. 2000; Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 74:8127–8134 [CrossRef]
    [Google Scholar]
  29. Nelson G. W., Stohlman S. A. 1993; Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. J Gen Virol 74:1975–1979 [CrossRef]
    [Google Scholar]
  30. Nelson G. W., Stohlman S. A., Tahara S. M. 2000; High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J Gen Virol 81:181–188
    [Google Scholar]
  31. Neumann G., Castrucci M. R., Kawaoka Y. 1997; Nuclear import and export of influenza virus nucleoprotein. J Virol 71:9690–9700
    [Google Scholar]
  32. Notredame C., Higgins D. G., Heringa J. 2000; T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217 [CrossRef]
    [Google Scholar]
  33. Ortego J., Escors D., Laude H., Enjuanes L. 2002; Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 76:11518–11529 [CrossRef]
    [Google Scholar]
  34. Ortego J., Sola I., Almazán F., Ceriani J. E., Riquelme C., Balasch M., Plana J., Enjuanes L. 2003; Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 308:13–22 [CrossRef]
    [Google Scholar]
  35. Pagano R. E., Martin O. C., Kang H. C., Haugland R. P. 1991; A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113:1267–1279 [CrossRef]
    [Google Scholar]
  36. Parker M. M., Masters P. S. 1990; Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 179:463–468 [CrossRef]
    [Google Scholar]
  37. Peng D., Koetzner C. A., McMahon T., Zhu Y., Masters P. S. 1995; Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins. J Virol 69:5475–5484
    [Google Scholar]
  38. Prentice E., Jerome W. G., Yoshimori T., Mizushima N., Denison M. R. 2004; Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279:10136–10141 [CrossRef]
    [Google Scholar]
  39. Risco C., Antón I. M., Suñé C., Pedregosa A. M., Martín-Alonso J. M., Parra F., Carrascosa J. L., Enjuanes L. 1995; Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol 69:5269–5277
    [Google Scholar]
  40. Risco C., Muntión M., Enjuanes L., Carrascosa J. L. 1998; Two types of virus-related particles are found during transmissible gastroenteritis virus morphogenesis. J Virol 72:4022–4031
    [Google Scholar]
  41. Robbins S. G., Frana M. F., McGowan J. J., Boyle J. F., Holmes K. V. 1986; RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology 150:402–410 [CrossRef]
    [Google Scholar]
  42. Rost B., Sander C. 1994; Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72 [CrossRef]
    [Google Scholar]
  43. Salanueva I. J., Carrascosa J. L., Risco C. 1999; Structural maturation of the transmissible gastroenteritis coronavirus. J Virol 73:7952–7964
    [Google Scholar]
  44. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858 [CrossRef]
    [Google Scholar]
  45. Siddell S. G., Barthel A., ter Meulen V. 1981; Coronavirus JHM: a virion-associated protein kinase. J Gen Virol 52:235–243 [CrossRef]
    [Google Scholar]
  46. Stohlman S. A., Lai M. M. C. 1979; Phosphoproteins of murine hepatitis viruses. J Virol 32:672–675
    [Google Scholar]
  47. Stohlman S. A., Fleming J. O., Patton C. D., Lai M. M. C. 1983; Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Virology 130:527–532 [CrossRef]
    [Google Scholar]
  48. Stohlman S. A., Baric R. S., Nelson G. N., Soe L. H., Welter L. M., Deans R. J. 1988; Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 62:4288–4295
    [Google Scholar]
  49. Sturman L. S., Holmes K. V., Behnke J. 1980; Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 33:449–462
    [Google Scholar]
  50. Tahara S. M., Dietlin T. A., Nelson G. W., Stohlman S. A., Manno D. J. 1998; Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. Adv Exp Med Biol 440:313–318
    [Google Scholar]
  51. Washburn M. P., Wolters D., Yates J. R. III 2001; Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247 [CrossRef]
    [Google Scholar]
  52. Wu X., Gong X., Foley H. D., Schnell M. J., Fu Z. F. 2002; Both viral transcription and replication are reduced when the rabies virus nucleoprotein is not phosphorylated. J Virol 76:4153–4161 [CrossRef]
    [Google Scholar]
  53. Wurm T., Chen H., Hodgson T., Britton P., Brooks G., Hiscox J. A. 2001; Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol 75:9345–9356 [CrossRef]
    [Google Scholar]
  54. Yount B., Curtis K. M., Baric R. S. 2000; Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. J Virol 74:10600–10611 [CrossRef]
    [Google Scholar]
  55. Yount B., Denison M. R., Weiss S. R., Baric R. S. 2002; Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76:11065–11078 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80975-0
Loading
/content/journal/jgv/10.1099/vir.0.80975-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error