1887

Abstract

In the absence of the human immunodeficiency virus type 1 (HIV-1) Vif protein, the host-cell cytidine deaminases APOBEC3F and -3G are co-packaged along with virion RNA. Upon infection of target cells, nascent single-stranded DNA can be edited extensively, invariably giving rise to defective genomes called G→A hypermutants. Although human T-cell leukemia virus type 1 (HTLV-1) replicates in the same cell type as HIV-1, it was shown here that HTLV-1 is relatively resistant to the antiviral effects mediated by human APOBEC3B, -3C, -3F and -3G. Nonetheless, a small percentage of genomes (0·1<<5 %) were edited extensively: up to 97 % of cytidine targets were deaminated. In contrast, hypermutated HTLV-1 genomes were not identified in peripheral blood mononuclear cell DNA from ten patients with non-malignant HTLV-1 infection. Thus, although HTLV-1 DNA can indeed be edited by at least four APOBEC3 cytidine deaminases , they are conspicuously absent .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80973-0
2005-09-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862489.html?itemId=/content/journal/jgv/10.1099/vir.0.80973-0&mimeType=html&fmt=ahah

References

  1. Beale R. C. L., Petersen-Mahrt S. K., Watt I. N., Harris R. S., Rada C., Neuberger M. S. 2004; Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo . J Mol Biol 337:585–596 [CrossRef]
    [Google Scholar]
  2. Bishop K. N., Holmes R. K., Sheehy A. M., Davidson N. O., Cho S.-J., Malim M. H. 2004; Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14:1392–1396 [CrossRef]
    [Google Scholar]
  3. Delebecque F., Pramberger K., Prévost M.-C., Brahic M., Tangy F. 2002; A chimeric human T-cell lymphotropic virus type 1 with the envelope glycoprotein of Moloney murine leukemia virus is infectious for murine cells. J Virol 76:7883–7889 [CrossRef]
    [Google Scholar]
  4. Derse D., Mikovits J., Polianova M., Felber B. K., Ruscetti F. 1995; Virions released from cells transfected with a molecular clone of human T-cell leukemia virus type I give rise to primary and secondary infections of T cells. J Virol 69:1907–1912
    [Google Scholar]
  5. Fitzgibbon J. E., Mazar S., Dubin D. T. 1993; A new type of G→A hypermutation affecting human immunodeficiency virus. AIDS Res Hum Retroviruses 9:833–838 [CrossRef]
    [Google Scholar]
  6. Gao F., Yue L., White A. T. 7 other authors 1992; Human infection by genetically diverse SIVSM-related HIV-2 in West Africa. Nature 358:495–499 [CrossRef]
    [Google Scholar]
  7. Harris R. S., Petersen-Mahrt S. K., Neuberger M. S. 2002; RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 10:1247–1253 [CrossRef]
    [Google Scholar]
  8. Harris R. S., Bishop K. N., Sheehy A. M., Craig H. M., Petersen-Mahrt S. K., Watt I. N., Neuberger M. S., Malim M. H. 2003; DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809 [CrossRef]
    [Google Scholar]
  9. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. 1995; Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126 [CrossRef]
    [Google Scholar]
  10. Janini M., Rogers M., Birx D. R., McCutchan F. E. 2001; Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J Virol 75:7973–7986 [CrossRef]
    [Google Scholar]
  11. Lecossier D., Bouchonnet F., Clavel F., Hance A. J. 2003; Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300:1112 [CrossRef]
    [Google Scholar]
  12. Liddament M. T., Brown W. L., Schumacher A. J., Harris R. S. 2004; APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14:1385–1391 [CrossRef]
    [Google Scholar]
  13. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. 2003; Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103 [CrossRef]
    [Google Scholar]
  14. Mansky L. M. 2000; In vivo analysis of human T-cell leukemia virus type 1 reverse transcription accuracy. J Virol 74:9525–9531 [CrossRef]
    [Google Scholar]
  15. Mariani R., Chen D., Schröfelbauer B., Navarro F., König R., Bollman B., Münk C., Nymark-McMahon H., Landau N. R. 2003; Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31 [CrossRef]
    [Google Scholar]
  16. Pelletier E., Saurin W., Cheynier R., Letvin N. L., Wain-Hobson S. 1995; The tempo and mode of SIV quasispecies development in vivo calls for massive viral replication and clearance. Virology 208:644–652 [CrossRef]
    [Google Scholar]
  17. Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. 1996; HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586 [CrossRef]
    [Google Scholar]
  18. Perry S. T., Flaherty M. T., Kelley M. J., Clabough D. L., Tronick S. R., Coggins L., Whetter L., Lengel C. R., Fuller F. 1992; The surface envelope protein gene region of equine infectious anemia virus is not an important determinant of tropism in vitro. J Virol 66:4085–4097
    [Google Scholar]
  19. Ribeiro A. C., Maia, Santa-Marta M., Pombo A., Moniz-Pereira J., Goncalves J., Barahona I., e Silva A. 2005; Functional analysis of Vif protein shows less restriction of human immunodeficiency virus type 2 by APOBEC3G. J Virol 79:823–833 [CrossRef]
    [Google Scholar]
  20. Royer-Leveau C., Mordelet E., Delebecque F., Gessain A., Charneau P., Ozden S. 2002; Efficient transfer of HTLV-1 tax gene in various primary and immortalized cells using a flap lentiviral vector. J Virol Methods 105:133–140 [CrossRef]
    [Google Scholar]
  21. Sova P., Volsky D. J. 1993; Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif -negative human immunodeficiency virus type 1. J Virol 67:6322–6326
    [Google Scholar]
  22. Suspène R., Sommer P., Henry M. 7 other authors 2004; APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32:2421–2429 [CrossRef]
    [Google Scholar]
  23. Suspène R., Henry M., Guillot S., Wain-Hobson S., Vartanian J.-P. 2005a; Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. J Gen Virol 86:125–129 [CrossRef]
    [Google Scholar]
  24. Suspène R., Guétard D., Henry M., Sommer P., Wain-Hobson S., Vartanian J. P. 2005b; Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo . Proc Natl Acad Sci U S A 102:8321–8326 [CrossRef]
    [Google Scholar]
  25. Vartanian J.-P., Meyerhans A., Åsjö B., Wain-Hobson S. 1991; Selection, recombination, and G→A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65:1779–1788
    [Google Scholar]
  26. Vartanian J.-P., Plikat U., Henry M., Mahieux R., Guillemot L., Meyerhans A., Wain-Hobson S. 1997; HIV genetic variation is directed and restricted by DNA precursor availability. J Mol Biol 270:139–151 [CrossRef]
    [Google Scholar]
  27. Wain-Hobson S., Sonigo P., Guyader M., Gazit A., Henry M. 1995; Erratic G→A hypermutation within a complete caprine arthritis-encephalitis virus (CAEV) provirus. Virology 209:297–303 [CrossRef]
    [Google Scholar]
  28. Wattel E., Vartanian J.-P., Pannetier C., Wain-Hobson S. 1995; Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol 69:2863–2868
    [Google Scholar]
  29. Wei X., Ghosh S. K., Taylor M. E. 9 other authors 1995; Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122 [CrossRef]
    [Google Scholar]
  30. Wiegand H. L., Doehle B. P., Bogerd H. P., Cullen B. R. 2004; A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23:2451–2458 [CrossRef]
    [Google Scholar]
  31. Yu Q., Chen D., König R., Mariani R., Unutmaz D., Landau N. R. 2004a; APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem 279:53379–53386 [CrossRef]
    [Google Scholar]
  32. Yu Q., König R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J. M., Landau N. R. 2004b; Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11:435–442 [CrossRef]
    [Google Scholar]
  33. Zhang H., Yang B., Pomerantz R. J., Zhang C., Arunachalam S. C., Gao L. 2003; The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98 [CrossRef]
    [Google Scholar]
  34. Zheng Y.-H., Irwin D., Kurosu T., Tokunaga K., Sata T., Peterlin B. M. 2004; Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78:6073–6076 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80973-0
Loading
/content/journal/jgv/10.1099/vir.0.80973-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error