1887

Abstract

Canine adenovirus type 2 (CAV2) has become an attractive vector for gene therapy because of its non-pathogenicity and the lack of pre-existing neutralizing antibodies against this virus in the human population. Additionally, this vector has been proposed as a conditionally replicative adenovirus agent under the control of an osteocalcin promoter for evaluation in a syngeneic, immunocompetent canine model with spontaneous osteosarcoma. In this study, a CAV2 vector labelled with the fluorescent capsid fusion protein IX–enhanced green fluorescent protein (pIX–EGFP) was developed. Expression of the fluorescent fusion-protein label in infected cells with proper nuclear localization, and incorporation into virions, could be detected. The labelled virions could be visualized by fluorescence microscopy; this was applicable to the tracking of CAV2 infection, as well as localizing the distribution of the vector in tissues. Expression of pIX–EGFP could be exploited to detect the replication and spread of CAV2. These results indicate that pIX can serve as a platform for incorporation of heterologous proteins in the context of a canine adenovirus xenotype. It is believed that capsid-labelled CAV2 has utility for vector-development studies and for monitoring CAV2-based oncolytic adenovirus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80968-0
2005-12-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/12/3201.html?itemId=/content/journal/jgv/10.1099/vir.0.80968-0&mimeType=html&fmt=ahah

References

  1. Aggarwal, N. & Mittal, S. K. ( 2000; ). Sequence analysis of porcine adenovirus type 3 E1 region, pIX and pIVa2 genes, and two novel open reading frames. Intervirology 43, 6–12.[CrossRef]
    [Google Scholar]
  2. Ahmed, A., Thompson, J., Emiliusen, L., Murphy, S., Beauchamp, R. D., Suzuki, K., Alemany, R., Harrington, K. & Vile, R. G. ( 2003; ). A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization. Nat Biotechnol 21, 771–777.[CrossRef]
    [Google Scholar]
  3. Akalu, A., Liebermann, H., Bauer, U., Granzow, H. & Seidel, W. ( 1999; ). The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. J Virol 73, 6182–6187.
    [Google Scholar]
  4. Both, G. W. ( 2004; ). Ovine atadenovirus: a review of its biology, biosafety profile and application as a gene delivery vector. Immunol Cell Biol 82, 189–195.[CrossRef]
    [Google Scholar]
  5. Campos, S. K., Parrott, M. B. & Barry, M. A. ( 2004; ). Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol Ther 9, 942–954.[CrossRef]
    [Google Scholar]
  6. Chroboczek, J., Bieber, F. & Jacrot, B. ( 1992; ). The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186, 280–285.[CrossRef]
    [Google Scholar]
  7. Colby, W. W. & Shenk, T. ( 1981; ). Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39, 977–980.
    [Google Scholar]
  8. Crystal, R. G., Mastrangeli, A., Sanders, A. & 7 other authors ( 1995; ). Evaluation of repeat administration of a replication deficient, recombinant adenovirus containing the normal cystic fibrosis transmembrane conductance regulator cDNA to the airways of individuals with cystic fibrosis. Hum Gene Ther 6, 667–703.[CrossRef]
    [Google Scholar]
  9. Curiel, D. T. & Douglas, J. T. (editors) ( 2002; ). Vector Targeting for Therapeutic Gene Delivery. Hoboken, NJ: Wiley-Liss.
  10. Dijkema, R., Maat, J., Dekker, B. M., van Ormondt, H. & Boyer, H. W. ( 1981; ). The gene for polypeptide IX of human adenovirus type 7. Gene 13, 375–385.[CrossRef]
    [Google Scholar]
  11. Dmitriev, I. P., Kashentseva, E. A. & Curiel, D. T. ( 2002; ). Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 76, 6893–6899.[CrossRef]
    [Google Scholar]
  12. Engler, J. A. ( 1981; ). The nucleotide sequence of the polypeptide IX gene of human adenovirus type 3. Gene 13, 387–394.[CrossRef]
    [Google Scholar]
  13. Gao, W., Robbins, P. D. & Gambotto, A. ( 2003; ). Human adenovirus type 35: nucleotide sequence and vector development. Gene Ther 10, 1941–1949.[CrossRef]
    [Google Scholar]
  14. Hemminki, A., Kanerva, A., Kremer, E. J. & 10 other authors ( 2003; ). A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 7, 163–173.[CrossRef]
    [Google Scholar]
  15. Hess, M., Blöcker, H. & Brandt, P. ( 1997; ). The complete nucleotide sequence of the egg drop syndrome virus: an intermediate between mastadenoviruses and aviadenoviruses. Virology 238, 145–156.[CrossRef]
    [Google Scholar]
  16. Kochanek, S., Schiedner, G. & Volpers, C. ( 2001; ). High-capacity ‘gutless' adenoviral vectors. Curr Opin Mol Ther 3, 454–463.
    [Google Scholar]
  17. Kremer, E. J., Boutin, S., Chillon, M. & Danos, O. ( 2000; ). Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74, 505–512.[CrossRef]
    [Google Scholar]
  18. Le, L. P., Everts, M., Dmitriev, I. P., Davydova, J. G., Yamamoto, M. & Curiel, D. T. ( 2004; ). Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 3, 105–116.[CrossRef]
    [Google Scholar]
  19. Lehmberg, E., Traina, J. A., Chakel, J. A. & 9 other authors ( 1999; ). Reversed-phase high-performance liquid chromatographic assay for the adenovirus type 5 proteome. J Chromatogr B Biomed Sci Appl 732, 411–423.[CrossRef]
    [Google Scholar]
  20. Lochmuller, H., Jani, A., Huard, J., Prescott, S., Simoneau, M., Massie, B., Karpati, G. & Acsadi, G. ( 1994; ). Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum Gene Ther 5, 1485–1491.[CrossRef]
    [Google Scholar]
  21. Lutz, P., Rosa-Calatrava, M. & Kedinger, C. ( 1997; ). The product of the adenovirus intermediate gene IX is a transcriptional activator. J Virol 71, 5102–5109.
    [Google Scholar]
  22. Mei, Y.-F., Skog, J., Lindman, K. & Wadell, G. ( 2003; ). Comparative analysis of the genome organization of human adenovirus 11, a member of the human adenovirus species B, and the commonly used human adenovirus 5 vector, a member of species C. J Gen Virol 84, 2061–2071.[CrossRef]
    [Google Scholar]
  23. Meulenbroek, R. A., Sargent, K. L., Lunde, J., Jasmin, B. J. & Parks, R. J. ( 2004; ). Use of adenovirus protein IX (pIX) to display large polypeptides on the virion – generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 9, 617–624.[CrossRef]
    [Google Scholar]
  24. Miller, N. & Whelan, J. ( 1997; ). Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum Gene Ther 8, 803–815.[CrossRef]
    [Google Scholar]
  25. Nettelbeck, D. M., Jérôme, V. & Müller, R. ( 2000; ). Gene therapy: designer promoters for tumour targeting. Trends Genet 16, 174–181.[CrossRef]
    [Google Scholar]
  26. O'Carroll, S. J., Hall, A. R., Myers, C. J., Braithwaite, A. W. & Dix, B. R. ( 2000; ). Quantifying adenoviral titers by spectrophotometry. Biotechniques 28, 408–410.
    [Google Scholar]
  27. Ojkic, D. & Nagy, É. ( 2000; ). The complete nucleotide sequence of fowl adenovirus type 8. J Gen Virol 81, 1833–1837.
    [Google Scholar]
  28. Parks, R. J. ( 2005; ). Adenovirus protein IX: a new look at an old protein. Mol Ther 11, 19–25.
    [Google Scholar]
  29. Peltékian, E., Garcia, L. & Danos, O. ( 2002; ). Neurotropism and retrograde axonal transport of a canine adenoviral vector: a tool for targeting key structures undergoing neurodegenerative processes. Mol Ther 5, 25–32.[CrossRef]
    [Google Scholar]
  30. Rasmussen, U. B., Benchaibi, M., Meyer, V., Schlesinger, Y. & Schughart, K. ( 1999; ). Novel human gene transfer vectors: evaluation of wild-type and recombinant animal adenoviruses in human-derived cells. Hum Gene Ther 10, 2587–2599.[CrossRef]
    [Google Scholar]
  31. Reddy, P. S., Idamakanti, N., Hyun, B.-H., Tikoo, S. K. & Babiuk, L. A. ( 1999; ). Development of porcine adenovirus-3 as an expression vector. J Gen Virol 80, 563–570.
    [Google Scholar]
  32. Rosa-Calatrava, M., Puvion-Dutilleul, F., Lutz, P., Dreyer, D., de Thé, H., Chatton, B. & Kedinger, C. ( 2003; ). Adenovirus protein IX sequesters host-cell promyelocytic leukaemia protein and contributes to efficient viral proliferation. EMBO Rep 4, 969–975.[CrossRef]
    [Google Scholar]
  33. Salmon, K. & Haj-Ahmad, Y. ( 1994; ). Sequence analysis of bovine adenovirus type 2 early region 1 and pIX gene. Intervirology 37, 298–305.
    [Google Scholar]
  34. Sargent, K. L., Meulenbroek, R. A. & Parks, R. J. ( 2004; ). Activation of adenoviral gene expression by protein IX is not required for efficient virus replication. J Virol 78, 5032–5037.[CrossRef]
    [Google Scholar]
  35. Shenk, T. ( 1996; ). Adenoviridae: the viruses and their replication. In Fields Virology, 3rd edn, pp. 2111–2148. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott-Raven.
  36. Shibata, R., Shinagawa, M., Iida, Y. & Tsukiyama, T. ( 1989; ). Nucleotide sequence of E1 region of canine adenovirus type 2. Virology 172, 460–467.[CrossRef]
    [Google Scholar]
  37. Stewart, P. L., Burnett, R. M., Cyrklaff, M. & Fuller, S. D. ( 1991; ). Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67, 145–154.[CrossRef]
    [Google Scholar]
  38. Ternovoi, V. V., Le, L. P., Belousova, N., Smith, B. F., Siegal, G. P. & Curiel, D. T. ( 2005; ). Productive replication of human adenovirus type 5 in canine cells. J Virol 79, 1308–1311.[CrossRef]
    [Google Scholar]
  39. van Oostrum, J. & Burnett, R. M. ( 1985; ). Molecular composition of the adenovirus type 2 virion. J Virol 56, 439–448.
    [Google Scholar]
  40. Vellinga, J., Rabelink, M. J. W. E., Cramer, S. J., van den Wollenberg, D. J. M., Van der Meulen, H., Leppard, K. N., Fallaux, F. J. & Hoeben, R. C. ( 2004; ). Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 78, 3470–3479.[CrossRef]
    [Google Scholar]
  41. Vrati, S., Brookes, D. E., Strike, P., Khatri, A., Boyle, D. B. & Both, G. W. ( 1996; ). Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites. Virology 220, 186–199.[CrossRef]
    [Google Scholar]
  42. Wickham, T. J. ( 2003; ). Ligand-directed targeting of genes to the site of disease. Nat Med 9, 135–139.[CrossRef]
    [Google Scholar]
  43. Zabner, J., Petersen, D. M., Puga, A. P. & 8 other authors ( 1994; ). Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nat Genet 6, 75–83.[CrossRef]
    [Google Scholar]
  44. Zakhartchouk, A., Connors, W., van Kessel, A. & Tikoo, S. K. ( 2004; ). Bovine adenovirus type 3 containing heterologous protein in the C-terminus of minor capsid protein IX. Virology 320, 291–300.[CrossRef]
    [Google Scholar]
  45. Zheng, B. J., Graham, F. L. & Prevec, L. ( 1999; ). Transcription units of E1a, E1b and pIX regions of bovine adenovirus type 3. J Gen Virol 80, 1735–1742.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80968-0
Loading
/content/journal/jgv/10.1099/vir.0.80968-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error