1887

Abstract

Rational design of antibodies targeting essential viral proteins can complement the palette of antiviral resistance strategies. Here, stable and high expression of single-chain monoclonal antibodies targeting the nucleoprotein of the economically important plant virus , a protein that is involved in multiple steps in the viral infection cycle, is reported. High cytoplasmic expression levels of three selected phage display-derived anti-viral single-chain antibodies were established. Of these antibodies, two led to high levels of resistance against this plant virus. Protoplast experiments provided evidence that the two resistance-conferring antibodies may have a different mode of action and could be combined for higher durability of resistance in the field.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80958-0
2005-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/7/vir862107.html?itemId=/content/journal/jgv/10.1099/vir.0.80958-0&mimeType=html&fmt=ahah

References

  1. Baulcombe D. 1999; Viruses and gene silencing in plants. Arch Virol 15:S189–S201
    [Google Scholar]
  2. Boonham N., Barker I. 1998; Strain specific recombinant antibodies to potato virus Y potyvirus. J Virol Methods 74:193–199 [CrossRef]
    [Google Scholar]
  3. Boonrod K., Galetzka D., Nagy P. D., Conrad U., Krczal G. 2004; Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 22:856–862 [CrossRef]
    [Google Scholar]
  4. Bucher E., Sijen T., de Haan P., Goldbach R., Prins M. 2003; Negative strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329–1336 [CrossRef]
    [Google Scholar]
  5. Conrad U., Fiedler U. 1998; Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109 [CrossRef]
    [Google Scholar]
  6. de ávila A. C., de Haan P., Kormelink R., de O. Resende R., Goldbach R. W., Peters D. 1993; Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol 74:153–159 [CrossRef]
    [Google Scholar]
  7. de Haan P., Wagemakers L., Peters D., Goldbach R. 1990; The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001–1007 [CrossRef]
    [Google Scholar]
  8. de Haan P., Kormelink R., de Oliveira Resende R., van Poelwijk F., Peters D., Goldbach R. 1991; Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72:2207–2216 [CrossRef]
    [Google Scholar]
  9. de Jaeger G., Buys E., Eeckhout D. 7 other authors 1999; High level accumulation of single-chain variable fragments in the cytosol of transgenic petunia hybrida. Eur J Biochem 259:426–434 [CrossRef]
    [Google Scholar]
  10. de Neve M., de Buck S., de Wilde C., van Houdt H., Strobbe I., Jacobs A., van Montagu M., Depicker A. 1999; Gene silencing results in instability of antibody production in transgenic plants. Mol Gen Genet 260:582–592 [CrossRef]
    [Google Scholar]
  11. Ditta G., Stanfield S., Corbin D., Helsinki D. R. 1980; Broad host range cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci U S A 77:7347–7351 [CrossRef]
    [Google Scholar]
  12. Duijsings D., Kormelink R., Goldbach R. 2001; In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J 20:2545–2552 [CrossRef]
    [Google Scholar]
  13. Elliott R. M., Bouloy M., Calisher C. H., Goldbach R., Moyer J. T., Nichol S. T., Petterson R., Plyusnin A., Schmalljohn C. S. 2000; Family Bunyaviridae . In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses pp  599–621 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  14. Fecker L. E., Kaufmann A., Commandeur U., Commandeur J., Koenig R., Burgermeister W. 1996; Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana . Plant Mol Biol 32:979–986 [CrossRef]
    [Google Scholar]
  15. Gielen J. J. L., de Haan P., Kool A. J., Peters D., van Grinsven M. Q. J. M., Goldbach R. W. 1991; Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Biotechnology 9:1363–1367 [CrossRef]
    [Google Scholar]
  16. Griep R. A., Prins M., van Twisk C., Keller H. J. H. G., Kerschbaumer R. J., Kormelink R., Goldbach R. W., Schots A. 2000; Application of phage display in selecting Tomato spotted wilt virus -specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA. Phytopathology 90:183–190 [CrossRef]
    [Google Scholar]
  17. Harper K., Kerschbaumer R. J., Ziegler A., Macintosh S. M., Cowan G. H., Himmler G., Mayo M. A., Torrance L. 1997; A scFv–alkaline phosphatase fusion protein which detects potato leafroll luteovirus in plant extracts by ELISA. J Virol Methods 63:237–242 [CrossRef]
    [Google Scholar]
  18. Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D., Rogers S. G., Fraley R. T. 1985; A simple method for transferring genes into plants. Science 227:1229–1231 [CrossRef]
    [Google Scholar]
  19. Kikkert M., van Lent J., Storms M., Bodegom P., Kormelink R., Goldbach R. 1999; Tomato spotted wilt virus particle morphogenesis in plant cells. J Virol 73:2288–2297
    [Google Scholar]
  20. Kormelink R., de Haan P., Meurs C., Peters D., Goldbach R. 1992; The nucleotide sequence of the M RNA segment of tomato spotted wilt virus: a bunyavirus with two ambisense RNA segments. J Gen Virol 73:2795–2804 [CrossRef]
    [Google Scholar]
  21. Munro S., Pelham H. 1986; An HSP-70 like protein in the ER: identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300 [CrossRef]
    [Google Scholar]
  22. Owen M., Gandecha A., Cockburn B., Whitelam G. 1992; Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology 10:790–794 [CrossRef]
    [Google Scholar]
  23. Popeijus H., Overmars H., Jones J., Blok V., Goverse A., Helder J., Schots A., Bakker J., Smant G. 2000; Degradation of plant cell walls by a nematode. Nature 406:36–37 [CrossRef]
    [Google Scholar]
  24. Prins M., Goldbach R. 1996; RNA-mediated virus resistance in transgenic plants. Arch Virol 141:2259–2276 [CrossRef]
    [Google Scholar]
  25. Prins M., Goldbach R. 1998; The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35 [CrossRef]
    [Google Scholar]
  26. Prins M., Kikkert M., Ismayadi C., de Graauw W., de Haan P., Goldbach R. 1997; Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSM gene sequences. Plant Mol Biol 33:235–243 [CrossRef]
    [Google Scholar]
  27. Schillberg S., Zimmermann S., Findlay K., Fischer R. 2000; Plasma membrane display of anti-viral single chain Fv fragments confers resistance to tobacco mosaic virus. Mol Breed 6:317–326 [CrossRef]
    [Google Scholar]
  28. Schouten A., Roosien J., van Engelen F. A. 8 other authors 1996; The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30:781–793 [CrossRef]
    [Google Scholar]
  29. Schouten A., Roosien J., de Boer J. M. 7 other authors 1997; Improving scFv antibody expression levels in the plant cytosol. FEBS Lett 415:235–241 [CrossRef]
    [Google Scholar]
  30. Schouten A., Roosien J., Bakker J., Schots A. 2002; Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol. J Biol Chem 277:19339–19345 [CrossRef]
    [Google Scholar]
  31. Smant G., Stokkermans J. P. W. G., Yan Y. 10 other authors 1998; Endogenous cellulases in animals: isolation of β -1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95:4906–4911 [CrossRef]
    [Google Scholar]
  32. Smith N. A., Singh S. P., Wang M. B., Stoutjesdijk P. A., Green A. G., Waterhouse P. M. 2000; Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320 [CrossRef]
    [Google Scholar]
  33. Storms M. M. H., Kormelink R., Peters D., van Lent J. W. M., Goldbach R. W. 1995; The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493 [CrossRef]
    [Google Scholar]
  34. Tavladoraki P., Benvenuto E., Trinca S., de Martinis D., Cattaneo A., Galeffi P. 1993; Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472 [CrossRef]
    [Google Scholar]
  35. van Engelen F. A., Schouten A., Molthoff J. W. 9 other authors 1994; Coordinate expression of antibody subunit genes yields high levels of functional antibodies in root of transgenic tobacco plants. Plant Mol Biol 26:1701–1710 [CrossRef]
    [Google Scholar]
  36. Vaughan T. J., Williams A. J., Pritchard K. 7 other authors 1996; Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314 [CrossRef]
    [Google Scholar]
  37. Ziegler A., Torrance L., Macintosh S. M., Cowan G. H., Mayo M. A. 1995; Cucumber mosaic cucumovirus antibodies from a synthetic phage display library. Virology 214:235–238 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80958-0
Loading
/content/journal/jgv/10.1099/vir.0.80958-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error