1887

Abstract

The clearance of prions from the brain was investigated in bigenic mice designated Tg(tTA : PrP)3, in which expression of the cellular prion protein (PrP) was regulated by oral doxycycline administration. With suppression of PrP expression, the incubation time for RML prions was prolonged almost threefold from ∼150 to ∼430 days. To determine the clearance rate of disease-causing PrP, bigenic mice were given oral doxycycline beginning 98 days after inoculation with RML prions and sacrificed at various time points over the subsequent 56 days. The half-life ( ) for PrP was ∼1·5 days in mouse brain, in reasonable agreement with the apparent of 30 h that was determined in a separate study for scrapie-infected mouse neuroblastoma (ScN2a) cells in culture. Both protease-sensitive and -resistant conformers of PrP were cleared at the same rate. The value for PrP clearance from brain was ∼18 h, which was considerably longer than the of 5 h found in ScN2a cells. The capability of the brain to clear prions raises the possibility that PrP is normally made at low levels and continually cleared, and that PrP may have a function in cellular metabolism. Moreover, these bigenic mice make it possible to determine both components of PrP accumulation, i.e. the rates of formation and clearance, for various strains of prions exhibiting different incubation times.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80947-0
2005-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2913.html?itemId=/content/journal/jgv/10.1099/vir.0.80947-0&mimeType=html&fmt=ahah

References

  1. Borchelt, D. R. & Prusiner, S. B. ( 1988; ). Cultured cells produce a soluble form of the cellular prion protein. J Cell Biol 107, 386a.
    [Google Scholar]
  2. Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N. & Prusiner, S. B. ( 1990; ). Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 110, 743–752.[CrossRef]
    [Google Scholar]
  3. Borchelt, D. R., Koliatsos, V. E., Guarnieri, M., Pardo, C. A., Sisodia, S. S. & Price, D. L. ( 1994; ). Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269, 14711–14714.
    [Google Scholar]
  4. Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., Marino, S., Weissmann, C. & Aguzzi, A. ( 1996; ). Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.[CrossRef]
    [Google Scholar]
  5. Brown, P., Rohwer, R. G., Green, E. M. & Gajdusek, D. C. ( 1982; ). Effect of chemicals, heat, and histopathologic processing on high-infectivity hamster-adapted scrapie virus. J Infect Dis 145, 683–687.[CrossRef]
    [Google Scholar]
  6. Büeler, H., Fisher, M., Lang, Y., Bluethmann, H., Lipp, H.-P., DeArmond, S. J., Prusiner, S. B., Aguet, M. & Weissmann, C. ( 1992; ). Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.[CrossRef]
    [Google Scholar]
  7. Carlson, G. A., Ebeling, C., Yang, S.-L., Telling, G., Torchia, M., Groth, D., Westaway, D., DeArmond, S. J. & Prusiner, S. B. ( 1994; ). Prion isolate specified allotypic interactions between the cellular and scrapie prion proteins in congenic and transgenic mice. Proc Natl Acad Sci U S A 91, 5690–5694.[CrossRef]
    [Google Scholar]
  8. Caughey, B., Race, R. E., Ernst, D., Buchmeier, M. J. & Chesebro, B. ( 1989; ). Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol 63, 175–181.
    [Google Scholar]
  9. Caughey, B., Neary, K., Butler, R., Ernst, D., Perry, L., Chesebro, B. & Race, R. E. ( 1990; ). Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J Virol 64, 1093–1101.
    [Google Scholar]
  10. Daude, N., Lehmann, S. & Harris, D. A. ( 1997; ). Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J Biol Chem 272, 11604–11612.[CrossRef]
    [Google Scholar]
  11. Donne, D. G., Viles, J. H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F. E., Prusiner, S. B., Wright, P. E. & Dyson, H. J. ( 1997; ). Structure of the recombinant full-length hamster prion protein PrP(29–231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94, 13452–13457.[CrossRef]
    [Google Scholar]
  12. Drisaldi, B., Stewart, R. S., Adles, C., Stewart, L. R., Quaglio, E., Biasini, E., Fioriti, L., Chiesa, R. & Harris, D. A. ( 2003; ). Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 278, 21732–21743.[CrossRef]
    [Google Scholar]
  13. Gilch, S., Winklhofer, K. F., Groschup, M. H. & 7 other authors ( 2001; ). Intracellular re-routing of prion protein prevents propagation of PrPSc and delays onset of prion disease. EMBO J 20, 3957–3966.[CrossRef]
    [Google Scholar]
  14. Gossen, M. & Bujard, H. ( 2002; ). Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36, 153–173.[CrossRef]
    [Google Scholar]
  15. Govaerts, C., Wille, H., Prusiner, S. B. & Cohen, F. E. ( 2004; ). Evidence for assembly of prions with left-handed β-helices into trimers. Proc Natl Acad Sci U S A 101, 8342–8347.[CrossRef]
    [Google Scholar]
  16. Hsiao, K. K., Scott, M., Foster, D., Groth, D. F., DeArmond, S. J. & Prusiner, S. B. ( 1990; ). Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250, 1587–1590.[CrossRef]
    [Google Scholar]
  17. Hsiao, K. K., Groth, D., Scott, M. & 7 other authors ( 1994; ). Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci U S A 91, 9126–9130.[CrossRef]
    [Google Scholar]
  18. Kaneko, K., Ball, H. L., Wille, H. & 9 other authors ( 2000; ). A synthetic peptide initiates Gerstmann–Sträussler–Scheinker (GSS) disease in transgenic mice. J Mol Biol 295, 997–1007.[CrossRef]
    [Google Scholar]
  19. Korth, C., Kaneko, K., Groth, D. & 11 other authors ( 2003; ). Abbreviated incubation times for human prions in mice expressing a chimeric mouse–human prion protein transgene. Proc Natl Acad Sci U S A 100, 4784–4789.[CrossRef]
    [Google Scholar]
  20. Legname, G., Baskakov, I. V., Nguyen, H.-O. B., Riesner, D., Cohen, F. E., DeArmond, S. J. & Prusiner, S. B. ( 2004; ). Synthetic mammalian prions. Science 305, 673–676.[CrossRef]
    [Google Scholar]
  21. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. ( 2002; ). Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci U S A 99, 7402–7407.[CrossRef]
    [Google Scholar]
  22. Mallucci, G., Dickinson, A., Linehan, J., Klohn, P. C., Brandner, S. & Collinge, J. ( 2003; ). Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874.[CrossRef]
    [Google Scholar]
  23. Mehlhorn, I., Groth, D., Stöckel, J. & 10 other authors ( 1996; ). High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35, 5528–5537.[CrossRef]
    [Google Scholar]
  24. Mironov, A., Jr, Latawiec, D., Wille, H. & 7 other authors ( 2003; ). Cytosolic prion protein in neurons. J Neurosci 23, 7183–7193.
    [Google Scholar]
  25. Muller, W. E., Scheffer, U., Perovic, S., Forrest, J. & Schroder, H. C. ( 1997; ). Interaction of prion protein mRNA with CBP35 and other cellular proteins: possible implications for prion replication and age-dependent changes. Arch Gerontol Geriatr 25, 41–58.[CrossRef]
    [Google Scholar]
  26. Muramoto, T., DeArmond, S. J., Scott, M., Telling, G. C., Cohen, F. E. & Prusiner, S. B. ( 1997; ). Heritable disorder resembling neuronal storage disease in mice expressing prion protein with deletion of an α-helix. Nat Med 3, 750–755.[CrossRef]
    [Google Scholar]
  27. Nunziante, M., Gilch, S. & Schätzl, H. M. ( 2003; ). Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein. J Biol Chem 278, 3726–3734.[CrossRef]
    [Google Scholar]
  28. Oesch, B., Westaway, D., Wälchli, M. & 9 other authors ( 1985; ). A cellular gene encodes scrapie PrP 27–30 protein. Cell 40, 735–746.[CrossRef]
    [Google Scholar]
  29. Pan, K.-M., Baldwin, M., Nguyen, J. & 8 other authors ( 1993; ). Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90, 10962–10966.[CrossRef]
    [Google Scholar]
  30. Peretz, D., Williamson, R. A., Matsunaga, Y. & 9 other authors ( 1997; ). A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273, 614–622.[CrossRef]
    [Google Scholar]
  31. Peretz, D., Scott, M., Groth, D., Williamson, A., Burton, D., Cohen, F. E. & Prusiner, S. B. ( 2001a; ). Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci 10, 854–863.[CrossRef]
    [Google Scholar]
  32. Peretz, D., Williamson, R. A., Kaneko, K. & 10 other authors ( 2001b; ). Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743.[CrossRef]
    [Google Scholar]
  33. Peters, P. J., Mironov, A., Jr, Peretz, D. & 8 other authors ( 2003; ). Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162, 703–717.[CrossRef]
    [Google Scholar]
  34. Prusiner, S. B., McKinley, M. P., Bowman, K. A., Bolton, D. C., Bendheim, P. E., Groth, D. F. & Glenner, G. G. ( 1983; ). Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358.[CrossRef]
    [Google Scholar]
  35. Prusiner, S. B., Scott, M., Foster, D. & 10 other authors ( 1990; ). Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686.[CrossRef]
    [Google Scholar]
  36. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wüthrich, K. ( 1997; ). NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413, 282–288.[CrossRef]
    [Google Scholar]
  37. Safar, J. ( 1996; ). Spectroscopic conformational studies of prion protein isoforms and the mechanism of transformation. Semin Virol 7, 207–214.[CrossRef]
    [Google Scholar]
  38. Safar, J., Wille, H., Itri, V., Groth, D., Serban, H., Torchia, M., Cohen, F. E. & Prusiner, S. B. ( 1998; ). Eight prion strains have PrPSc molecules with different conformations. Nat Med 4, 1157–1165.[CrossRef]
    [Google Scholar]
  39. Safar, J. G., Scott, M., Monaghan, J. & 12 other authors ( 2002; ). Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nat Biotechnol 20, 1147–1150.[CrossRef]
    [Google Scholar]
  40. Schätzl, H. M., Laszlo, L., Holtzman, D. M., Tatzelt, J., DeArmond, S. J., Weiner, R. I., Mobley, W. C. & Prusiner, S. B. ( 1997; ). A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71, 8821–8831.
    [Google Scholar]
  41. Scott, M., Foster, D., Mirenda, C. & 9 other authors ( 1989; ). Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59, 847–857.[CrossRef]
    [Google Scholar]
  42. Scott, M. R., Will, R., Ironside, J., Nguyen, H.-O. B., Tremblay, P., DeArmond, S. J. & Prusiner, S. B. ( 1999; ). Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc Natl Acad Sci U S A 96, 15137–15142.[CrossRef]
    [Google Scholar]
  43. Scott, M. R., Peretz, D., Nguyen, H.-O. B., DeArmond, S. J. & Prusiner, S. B. ( 2005; ). Transmission barriers for bovine, ovine, and human prions in transgenic mice. J Virol 79, 5259–5271.[CrossRef]
    [Google Scholar]
  44. Sparrer, H. E., Santoso, A., Szoka, F. C., Jr & Weissman, J. S. ( 2000; ). Evidence for the prion hypothesis: induction of the yeast [PSI +] factor by in vitro-converted Sup35 protein. Science 289, 595–599.[CrossRef]
    [Google Scholar]
  45. Supattapone, S., Nguyen, H.-O. B., Cohen, F. E., Prusiner, S. B. & Scott, M. R. ( 1999; ). Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci U S A 96, 14529–14534.[CrossRef]
    [Google Scholar]
  46. Supattapone, S., Muramoto, T., Legname, G., Mehlhorn, I., Cohen, F. E., DeArmond, S. J., Prusiner, S. B. & Scott, M. R. ( 2001a; ). Identification of two prion protein regions that modify scrapie incubation time. J Virol 75, 1408–1413.[CrossRef]
    [Google Scholar]
  47. Supattapone, S., Wille, H., Uyechi, L., Safar, J., Tremblay, P., Szoka, F. C., Cohen, F. E., Prusiner, S. B. & Scott, M. R. ( 2001b; ). Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75, 3453–3461.[CrossRef]
    [Google Scholar]
  48. Taraboulos, A., Jendroska, K., Serban, D., Yang, S.-L., DeArmond, S. J. & Prusiner, S. B. ( 1992a; ). Regional mapping of prion proteins in brains. Proc Natl Acad Sci U S A 89, 7620–7624.[CrossRef]
    [Google Scholar]
  49. Taraboulos, A., Raeber, A. J., Borchelt, D. R., Serban, D. & Prusiner, S. B. ( 1992b; ). Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell 3, 851–863.[CrossRef]
    [Google Scholar]
  50. Tatzelt, J., Prusiner, S. B. & Welch, W. J. ( 1996; ). Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15, 6363–6373.
    [Google Scholar]
  51. Telling, G. C., Scott, M., Mastrianni, J., Gabizon, R., Torchia, M., Cohen, F. E., DeArmond, S. J. & Prusiner, S. B. ( 1995; ). Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90.[CrossRef]
    [Google Scholar]
  52. Telling, G. C., Haga, T., Torchia, M., Tremblay, P., DeArmond, S. J. & Prusiner, S. B. ( 1996; ). Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 10, 1736–1750.[CrossRef]
    [Google Scholar]
  53. Tremblay, P., Meiner, Z., Galou, M. & 9 other authors ( 1998; ). Doxycyline control of prion protein transgene expression modulates prion disease in mice. Proc Natl Acad Sci U S A 95, 12580–12585.[CrossRef]
    [Google Scholar]
  54. Tremblay, P., Ball, H. L., Kaneko, K., Groth, D., Hegde, R. S., Cohen, F. E., DeArmond, S. J., Prusiner, S. B. & Safar, J. G. ( 2004; ). Mutant PrPSc conformers induced by a synthetic peptide and several prion strains. J Virol 78, 2088–2099.[CrossRef]
    [Google Scholar]
  55. Westaway, D., Goodman, P. A., Mirenda, C. A., McKinley, M. P., Carlson, G. A. & Prusiner, S. B. ( 1987; ). Distinct prion proteins in short and long scrapie incubation period mice. Cell 51, 651–662.[CrossRef]
    [Google Scholar]
  56. Wille, H., Michelitsch, M. D., Guénebaut, V., Supattapone, S., Serban, A., Cohen, F. E., Agard, D. A. & Prusiner, S. B. ( 2002; ). Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci U S A 99, 3563–3568.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80947-0
Loading
/content/journal/jgv/10.1099/vir.0.80947-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2913 - 2923

Accumulation of PrP and rPrP in the brains of RML-infected bigenic mice Clearance of PrP and rPrP from the brains of RML-infected Tg(tTA:PrP )3 mice Neuropathological profiles of RML-inoculated Tg(tTA:PrP )3 mice showing the impact of PrP depletion on PrP deposits in the cerebellum [Single PDF file](200 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error