1887

Abstract

In light of the finding of a previously unknown coronavirus as the aetiology of the severe acute respiratory syndrome (SARS), it is probable that other coronaviruses, than those recognized to date, are circulating in animal populations. Here, the results of a screening for coronavirus are presented, using a universal coronavirus RT-PCR, of the bird species graylag goose (), feral pigeon () and mallard (). Coronaviruses were found in cloacal swab samples from all the three bird species. In the graylag goose, 40 of 163 sampled birds were coronavirus positive, whereas two of 100 sampled pigeons and one of five sampled mallards tested positive. The infected graylag geese showed lower body weights compared with virus-negative birds, suggesting clinical significance of the infection. Phylogenetic analyses performed on the replicase gene and nucleocapsid protein sequences, indicated that the novel coronaviruses described in the present study all branch off from group III coronaviruses. All the novel avian coronaviruses harboured the conserved s2m RNA structure in their 3′ untranslated region, like other previously described group III coronaviruses, and like the SARS coronavirus. Sequencing of the complete nucleocapsid gene and downstream regions of goose and pigeon coronaviruses, evidenced the presence of two additional open reading frames for the goose coronavirus with no sequence similarity to known proteins, but with predicted transmembrane domains for one of the encoded proteins, and one additional open reading frame for the pigeon coronavirus, with a predicted transmembrane domain, downstream of the nucleocapsid gene.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80927-0
2005-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861597.html?itemId=/content/journal/jgv/10.1099/vir.0.80927-0&mimeType=html&fmt=ahah

References

  1. Adams, N. R. & Hofstad, M. S. ( 1971; ). Isolation of transmissible enteritis agent of turkeys in avian embryos. Avian Dis 15, 426–433.[CrossRef]
    [Google Scholar]
  2. Albassam, M. A., Winterfield, R. W. & Thacker, H. L. ( 1986; ). Comparison of the nephropathogenicity of four strains of infectious bronchitis virus. Avian Dis 30, 468–476.[CrossRef]
    [Google Scholar]
  3. Barr, D. A., Reece, R. L., O'Rourke, D., Button, C. & Faragher, J. T. ( 1988; ). Isolation of infectious bronchitis virus from a flock of racing pigeons. Aust Vet J 65, 228.[CrossRef]
    [Google Scholar]
  4. Bell, D., Roberton, S. & Hunter, P. R. ( 2004; ). Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos Trans R Soc Lond B Biol Sci 359, 1107–1114.[CrossRef]
    [Google Scholar]
  5. Breslin, J. J., Smith, L. G., Fuller, F. J. & Guy, J. S. ( 1999; ). Sequence analysis of the turkey coronavirus nucleocapsid protein gene and 3′ untranslated region identifies the virus as a close relative of infectious bronchitis virus. Virus Res 65, 187–193.[CrossRef]
    [Google Scholar]
  6. Cavanagh, D., Mawditt, K., Sharma, M., Drury, S. E., Ainsworth, H. L., Britton, P. & Gough, R. E. ( 2001; ). Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chicken. Avian Pathol 30, 355–368.[CrossRef]
    [Google Scholar]
  7. Cavanagh, D., Mawditt, K., Welchman, D. B., Britton, P. & Gough, R. E. ( 2002; ). Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol 31, 81–93.[CrossRef]
    [Google Scholar]
  8. Chen, H., Wurm, T., Britton, P., Brooks, G. & Hiscox, J. A. ( 2002; ). Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J Virol 76, 5233–5250.[CrossRef]
    [Google Scholar]
  9. Dalton, K., Casais, R., Shaw, K., Stirrups, K., Evans, S., Britton, P., Brown, T. D. & Cavanagh, D. ( 2001; ). cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J Virol 75, 125–133.[CrossRef]
    [Google Scholar]
  10. Drosten, C., Gunther, S., Preiser, W. & 23 other authors ( 2003; ). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967–1976.[CrossRef]
    [Google Scholar]
  11. Enjuanes, L., Brian, D., Cavanagh, D. & 9 other authors ( 2000; ). Coronaviridae. In Virus Taxonomy. Classification and Nomenclature of Viruses. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon, D. J. McGeoch, J. Maniloff, M. A. Mayo, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  12. Fischer, F., Peng, D., Hingley, S. T., Weiss, S. R. & Masters, P. S. ( 1997; ). The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J Virol 71, 996–1003.
    [Google Scholar]
  13. Goebel, S. J., Taylor, J. & Masters, P. S. ( 2004; ). The 3′ cis-acting genomic replication element of the severe acute respiratory syndrome coronavirus can function in the murine coronavirus genome. J Virol 78, 7846–7851.[CrossRef]
    [Google Scholar]
  14. Gonzalez, J. M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A. E. & Enjuanes, L. ( 2003; ). A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148, 2207–2235.[CrossRef]
    [Google Scholar]
  15. Gough, R. E., Cox, W. J., Winkler, C. E., Sharp, M. W. & Spackman, D. ( 1996; ). Isolation and identification of infectious bronchitis virus from pheasants. Vet Rec 138, 208–209.[CrossRef]
    [Google Scholar]
  16. Guan, Y., Zheng, B. J., He, Y. Q. & 15 other authors ( 2003; ). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278.[CrossRef]
    [Google Scholar]
  17. Hartmann, E., Rapoport, T. A. & Lodish, H. F. ( 1989; ). Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci U S A 86, 5786–5790.[CrossRef]
    [Google Scholar]
  18. Herrewegh, A. A., Vennema, H., Horzinek, M. C., Rottier, P. J. & de Groot, R. J. ( 1995; ). The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212, 622–631.[CrossRef]
    [Google Scholar]
  19. Hicks, G. R. & Raikhel, N. V. ( 1995; ). Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol 11, 155–188.[CrossRef]
    [Google Scholar]
  20. Hiscox, J. A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D. & Brooks, G. ( 2001; ). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol 75, 506–512.[CrossRef]
    [Google Scholar]
  21. Jonassen, C. M., Jonassen, T. O. & Grinde, B. ( 1998; ). A common RNA motif in the 3′ end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. J Gen Virol 79, 715–718.
    [Google Scholar]
  22. Jordan, F. T. & Nassar, T. J. ( 1973; ). The combined influence of age of embryo and temperature and duration of incubation on the replication and yield of avian infectious bronchitis (IB) virus in the developing chick embryo. Avian Pathol 2, 279–294.[CrossRef]
    [Google Scholar]
  23. Klempner, M. S. & Shapiro, D. S. ( 2004; ). Crossing the species barrier – one small step to man, one giant leap to mankind. N Engl J Med 350, 1171–1172.[CrossRef]
    [Google Scholar]
  24. Kozak, M. ( 1995; ). Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci U S A 92, 2662–2666.[CrossRef]
    [Google Scholar]
  25. Kozak, M. ( 1997; ). Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16, 2482–2492.[CrossRef]
    [Google Scholar]
  26. Ksiazek, T. G., Erdman, D., Goldsmith, C. S. & 24 other authors ( 2003; ). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953–1966.[CrossRef]
    [Google Scholar]
  27. Kuiken, T., Fouchier, R. A., Schutten, M. & 19 other authors ( 2003; ). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270.[CrossRef]
    [Google Scholar]
  28. Liu, D. X. & Inglis, S. C. ( 1992; ). Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J Virol 66, 6143–6154.
    [Google Scholar]
  29. Liu, S., Chen, J., Chen, J. & 7 other authors ( 2005; ). Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). J Gen Virol 86, 719–725.[CrossRef]
    [Google Scholar]
  30. Marra, M. A., Jones, S. J., Astell, C. R. & 56 other authors ( 2003; ). The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404.[CrossRef]
    [Google Scholar]
  31. Poon, L. L., Guan, Y., Nicholls, J. M., Yuen, K. Y. & Peiris, J. S. ( 2004; ). The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect Dis 4, 663–671.[CrossRef]
    [Google Scholar]
  32. Ren, A. X., Xie, Y. H., Kong, Y. Y., Yang, G. Z., Zhang, Y. Z., Wang, Y. & Wu, X. F. ( 2004; ). Expression, purification and sublocalization of SARS-CoV nucleocapsid protein in insect cells. Acta Biochim Biophys Sin 36, 754–758.[CrossRef]
    [Google Scholar]
  33. Rest, J. S. & Mindell, D. P. ( 2003; ). SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect Genet Evol 3, 219–225.[CrossRef]
    [Google Scholar]
  34. Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. ( 1991; ). Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623.[CrossRef]
    [Google Scholar]
  35. Robertson, M. P., Igel, H., Baertsch, R., Haussler, D., Ares, M., Jr & Scott, W. G. ( 2005; ). The structure of a rigorously conserved RNA element within the SARS virus genome. PLoS Biol 3, E5.[CrossRef]
    [Google Scholar]
  36. Sapats, S. I., Ashton, F., Wright, P. J. & Ignjatovic, J. ( 1996a; ). Novel variation in the N protein of avian infectious bronchitis virus. Virology 226, 412–417.[CrossRef]
    [Google Scholar]
  37. Sapats, S. I., Ashton, F., Wright, P. J. & Ignjatovic, J. ( 1996b; ). Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol 77, 413–418.[CrossRef]
    [Google Scholar]
  38. Singer, S. J. ( 1990; ). The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol 6, 247–296.[CrossRef]
    [Google Scholar]
  39. Singh, M. ( 1999; ). A novel internal open reading frame product expressed from a polycistronic mRNA of porcine epidemic diarrhoea virus may not contribute to virus attenuation. J Gen Virol 80, 1959–1963.
    [Google Scholar]
  40. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C. & 7 other authors ( 2003; ). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991–1004.[CrossRef]
    [Google Scholar]
  41. Stanhope, M. J., Brown, J. R. & Amrine-Madsen, H. ( 2004; ). Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infect Genet Evol 4, 15–19.[CrossRef]
    [Google Scholar]
  42. Stavrinides, J. & Guttman, D. S. ( 2004; ). Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol 78, 76–82.[CrossRef]
    [Google Scholar]
  43. Stephensen, C. B., Casebolt, D. B. & Gangopadhyay, N. N. ( 1999; ). Phylogenetic analysis of a highly conserved region of the polymerase gene from 11 coronaviruses and development of a consensus polymerase chain reaction assay. Virus Res 60, 181–189.[CrossRef]
    [Google Scholar]
  44. Sun, Z. F. & Meng, X. J. ( 2004; ). Antigenic cross-reactivity between the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus and polyclonal antisera of antigenic group I animal coronaviruses: implication for SARS diagnosis. J Clin Microbiol 42, 2351–2352.[CrossRef]
    [Google Scholar]
  45. Traavik, T., Mehl, R. & Kjeldsberg, E. ( 1977; ). “Runde” virus, a coronavirus-like agent associated with seabirds and ticks. Arch Virol 55, 25–38.[CrossRef]
    [Google Scholar]
  46. Tung, F. Y., Abraham, S., Sethna, M., Hung, S. L., Sethna, P., Hogue, B. G. & Brian, D. A. ( 1992; ). The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated. Virology 186, 676–683.[CrossRef]
    [Google Scholar]
  47. Wang, D., Urisman, A., Liu, Y. T. & 11 other authors ( 2003; ). Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 1, E2.
    [Google Scholar]
  48. Williams, A. K., Wang, L., Sneed, L. W. & Collisson, E. W. ( 1993; ). Analysis of a hypervariable region in the 3′ non-coding end of the infectious bronchitis virus genome. Virus Res 28, 19–27.[CrossRef]
    [Google Scholar]
  49. Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G. & Hiscox, J. A. ( 2001; ). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol 75, 9345–9356.[CrossRef]
    [Google Scholar]
  50. Zhou, M. & Collisson, E. W. ( 2000; ). The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3′ genomic RNA. Virus Res 67, 31–39.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80927-0
Loading
/content/journal/jgv/10.1099/vir.0.80927-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error