1887

Abstract

Human adenoviruses have been the subject of intensive investigation since their discovery in the early 1950s: they have served as model pathogens, as probes for studying cellular processes and, more recently, as efficient gene-delivery vehicles for experimental gene therapy. As a result, a detailed insight into many aspects of adenovirus biology is now available. The capsid proteins and in particular the hexon, penton-base and fibre proteins (the so-called major capsid proteins) have been studied extensively and their structure and function in the virus capsid are now well-defined. On the other hand, the minor proteins in the viral capsid, i.e. proteins IIIa, VI, VIII and IX, have received much less attention. Only the last few years have witnessed a sharp increase in the number of studies on their structure and function. Here, a review of the minor capsid proteins is provided, with a focus on new insights into their position and role in the capsid and the opportunities that they provide for improving human adenovirus-derived gene-delivery vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80877-0
2005-06-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861581.html?itemId=/content/journal/jgv/10.1099/vir.0.80877-0&mimeType=html&fmt=ahah

References

  1. Akalu A., Liebermann H., Bauer U., Granzow H., Seidel W. 1999; The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. J Virol 73:6182–6187
    [Google Scholar]
  2. Barnett B. G., Crews C. J., Douglas J. T. 2002; Targeted adenoviral vectors. Biochim Biophys Acta 15751–14 [CrossRef]
    [Google Scholar]
  3. Barouch D. H., Pau M. G., Custers J. H. H. V. 15 other authors 2004; Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 172:6290–6297 [CrossRef]
    [Google Scholar]
  4. Belousova N., Krendelchtchikova V., Curiel D. T., Krasnykh V. 2002; Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 76:8621–8631 [CrossRef]
    [Google Scholar]
  5. Benkő M., Harrach B. 2003; Molecular evolution of adenoviruses. Curr Top Microbiol Immunol 272:3–35
    [Google Scholar]
  6. Boudin M.-L., D'Halluin J.-C., Cousin C., Boulanger P. 1980; Human adenovirus type 2 protein IIIa. II. Maturation and encapsidation. Virology 101:144–156 [CrossRef]
    [Google Scholar]
  7. Boulanger P., Lemay P., Blair G. E., Russell W. C. 1979; Characterization of adenovirus protein IX. J Gen Virol 44:783–800 [CrossRef]
    [Google Scholar]
  8. Campos S. K., Parrott M. B., Barry M. A. 2004a; Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol Ther 9:942–954 [CrossRef]
    [Google Scholar]
  9. Campos S. K., Parrott M. B., March M., Chiu W., Barry M. A. 2004b; Metabolically biotinylated viruses for vector targeting, virus purification, and capsid imaging. Mol Ther 9 (Suppl. 1):S390
    [Google Scholar]
  10. Chatterjee P. K., Vayda M. E., Flint S. J. 1985; Interactions among the three adenovirus core proteins. J Virol 55:379–386
    [Google Scholar]
  11. Chroboczek J., Viard F., D'Halluin J.-C. 1986; Human adenovirus 2 temperature-sensitive mutant 112 contains three mutations in the protein IIIa gene. Gene 49:157–160 [CrossRef]
    [Google Scholar]
  12. Colby W. W., Shenk T. 1981; Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39:977–980
    [Google Scholar]
  13. Crompton J., Toogood C. I. A., Wallis N., Hay R. T. 1994; Expression of a foreign epitope on the surface of the adenovirus hexon. J Gen Virol 75:133–139 [CrossRef]
    [Google Scholar]
  14. Curiel D. T. 2002; Strategies to alter the tropism of adenoviral vectors via genetic capsid modification. In Vector Targeting for Therapeutic Gene Delivery pp  171–200 Edited by Curiel D. T., Douglas J. T. Hoboken, NJ, USA: Wiley-Liss;
    [Google Scholar]
  15. Curiel D. T. 2003; Capsid-modified recombinant adenovirus and methods of use . United States patent 6555368
  16. Davison A. J., Benkő M., Harrach B. 2003; Genetic content and evolution of adenoviruses. J Gen Virol 84:2895–2908 [CrossRef]
    [Google Scholar]
  17. De Jong J. C., Wermenbol A. G., Verweij-Uijterwaal M. W., Slaterus K. W., Wertheim-Van Dillen P., Van Doornum G. J. J., Khoo S. H., Hierholzer J. C. 1999; Adenoviruses from human immunodeficiency virus-infected individuals, including two strains that represent new candidate serotypes Ad50 and Ad51 of species B1 and D, respectively. J Clin Microbiol 37:3940–3945
    [Google Scholar]
  18. D'Halluin J. C., Cousin C., Boulanger P. 1982; Physical mapping of adenovirus type 2 temperature-sensitive mutations by restriction endonuclease analysis of interserotypic recombinants. J Virol 41:401–413
    [Google Scholar]
  19. Dmitriev I. P., Kashentseva E. A., Curiel D. T. 2002; Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 76:6893–6899 [CrossRef]
    [Google Scholar]
  20. Einfeld D. A., Brough D. E., Roelvink P. W., Kovesdi I., Wickham T. J. 1999; Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J Virol 73:9130–9136
    [Google Scholar]
  21. Everitt E., Philipson L. 1974; Structural proteins of adenoviruses. XI. Purification of three low molecular weight virion proteins of adenovirus type 2 and their synthesis during productive infection. Virology 62:253–269 [CrossRef]
    [Google Scholar]
  22. Everitt E., Sundquist B., Pettersson U., Philipson L. 1973; Structural proteins of adenoviruses. X. Isolation and topography of low molecular weight antigens from the virion of adenovirus type 2. Virology 52:130–147 [CrossRef]
    [Google Scholar]
  23. Everitt E., Lutter L., Philipson L. 1975; Structural proteins of adenoviruses. XII. Location and neighbor relationship among proteins of adenovirion type 2 as revealed by enzymatic iodination, immunoprecipitation and chemical cross-linking. Virology 67:197–208 [CrossRef]
    [Google Scholar]
  24. Furcinitti P. S., van Oostrum J., Burnett R. M. 1989; Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 8:3563–3570
    [Google Scholar]
  25. Gall J., Kass-Eisler A., Leinwand L., Falck-Pedersen E. 1996; Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol 70:2116–2123
    [Google Scholar]
  26. Ghosh-Choudhury G., Haj-Ahmad Y., Graham F. L. 1987; Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 6:1733–1739
    [Google Scholar]
  27. Greber U. F., Willetts M., Webster P., Helenius A. 1993; Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486 [CrossRef]
    [Google Scholar]
  28. Havenga M. J. E., Lemckert A. A. C., Ophorst O. J. A. E. 13 other authors 2002; Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 76:4612–4620 [CrossRef]
    [Google Scholar]
  29. Henning P., Magnusson M. K., Gunneriusson E., Hong S. S., Boulanger P., Nygren P.-Å., Lindholm L. 2002; Genetic modification of adenovirus 5 tropism by a novel class of ligands based on a three-helix bundle scaffold derived from staphylococcal protein A. Hum Gene Ther 13:1427–1439 [CrossRef]
    [Google Scholar]
  30. Holterman L., Vogels R., van der Vlugt R. 15 other authors 2004; Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 78:13207–13215 [CrossRef]
    [Google Scholar]
  31. Huvent I., Hong S. S., Fournier C. 7 other authors 1998; Interaction and co-encapsidation of human immunodeficiency virus type 1 Gag and Vif recombinant proteins. J Gen Virol 79:1069–1081
    [Google Scholar]
  32. Krasnykh V. N., Mikheeva G. V., Douglas J. T., Curiel D. T. 1996; Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 70:6839–6846
    [Google Scholar]
  33. Krasnykh V., Belousova N., Korokhov N., Mikheeva G., Curiel D. T. 2001; Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75:4176–4183 [CrossRef]
    [Google Scholar]
  34. Le L. P., Everts M., Dmitriev I. P., Davydova J. G., Yamamoto M., Curiel D. T. 2004; Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 3:105–116 [CrossRef]
    [Google Scholar]
  35. Liu G.-Q., Babiss L. E., Volkert F. C., Young C. S. H., Ginsberg H. S. 1985; A thermolabile mutant of adenovirus 5 resulting from a substitution mutation in the protein VIII gene. J Virol 53:920–925
    [Google Scholar]
  36. Lutz P., Rosa-Calatrava M., Kedinger C. 1997; The product of the adenovirus intermediate gene IX is a transcriptional activator. J Virol 71:5102–5109
    [Google Scholar]
  37. Magnusson M. K., Hong S. S., Henning P., Boulanger P., Lindholm L. 2002; Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 4:356–370 [CrossRef]
    [Google Scholar]
  38. Mangel W. F., McGrath W. J., Toledo D. L., Anderson C. W. 1993; Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361:274–275 [CrossRef]
    [Google Scholar]
  39. Matthews D. A., Russell W. C. 1995; Adenovirus protein–protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease. J Gen Virol 76:1959–1969 [CrossRef]
    [Google Scholar]
  40. Meulenbroek R. A., Sargent K. L., Lunde J., Jasmin B. J., Parks R. J. 2004; Use of adenovirus protein IX (pIX) to display large polypeptides on the virion – generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 9:617–624 [CrossRef]
    [Google Scholar]
  41. Michael S. I., Hong J. S., Curiel D. T., Engler J. A. 1995; Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther 2:660–668
    [Google Scholar]
  42. Mizuguchi H., Hayakawa T. 2004; Targeted adenovirus vectors. Hum Gene Ther 15:1034–1044 [CrossRef]
    [Google Scholar]
  43. Mizuguchi H., Koizumi N., Hosono T., Utoguchi N., Watanabe Y., Kay M. A., Hayakawa T. 2001; A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther 8:730–735 [CrossRef]
    [Google Scholar]
  44. Molin M., Bouakaz L., Berenjian S., Akusjärvi G. 2002; Unscheduled expression of capsid protein IIIa results in defects in adenovirus major late mRNA and protein expression. Virus Res 83:197–206 [CrossRef]
    [Google Scholar]
  45. Newcomb W. W., Brown J. C. 1988; Use of Ar+ plasma etching to localize structural proteins in viruses: studies with adenovirus 2. Anal Biochem 169:279–286 [CrossRef]
    [Google Scholar]
  46. Pacini D. L., Dubovi E. J., Clyde W. A. Jr 1984; A new animal model for human respiratory tract disease due to adenovirus. J Infect Dis 150:92–97 [CrossRef]
    [Google Scholar]
  47. Rosa-Calatrava M., Grave L., Puvion-Dutilleul F., Chatton B., Kedinger C. 2001; Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 75:7131–7141 [CrossRef]
    [Google Scholar]
  48. Rosa-Calatrava M., Puvion-Dutilleul F., Lutz P., Dreyer D., de Thé H., Chatton B., Kedinger C. 2003; Adenovirus protein IX sequesters host-cell promyelocytic leukaemia protein and contributes to efficient viral proliferation. EMBO Rep 4:969–975 [CrossRef]
    [Google Scholar]
  49. Russell W. C. 2000; Update on adenovirus and its vectors. J Gen Virol 81:2573–2604
    [Google Scholar]
  50. Rux J. J., Burnett R. M. 2000; Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 1:18–30 [CrossRef]
    [Google Scholar]
  51. Rux J. J., Kuser P. R., Burnett R. M. 2003; Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution X-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77:9553–9566 [CrossRef]
    [Google Scholar]
  52. San Martín C., Burnett R. M. 2003; Structural studies on adenoviruses. Curr Top Microbiol Immunol 272:57–94
    [Google Scholar]
  53. Sargent K. L., Meulenbroek R. A., Parks R. J. 2004a; Activation of adenoviral gene expression by protein IX is not required for efficient virus replication. J Virol 78:5032–5037 [CrossRef]
    [Google Scholar]
  54. Sargent K. L., Ng P., Evelegh C., Graham F. L., Parks R. J. 2004b; Development of a size-restricted pIX-deleted helper virus for amplification of helper-dependent adenovirus vectors. Gene Ther 11:504–511 [CrossRef]
    [Google Scholar]
  55. Souquere-Besse S., Pichard E., Filhol O., Legrand V., Rosa-Calatrava M., Hovanessian A. G., Cochet C., Puvion-Dutilleul F. 2002; Adenovirus infection targets the cellular protein kinase CK2 and RNA-activated protein kinase (PKR) into viral inclusions of the cell nucleus. Microsc Res Tech 56:465–478 [CrossRef]
    [Google Scholar]
  56. Stevenson S. C., Rollence M., White B., Weaver L., McClelland A. 1995; Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J Virol 69:2850–2857
    [Google Scholar]
  57. Stewart P. L., Burnett R. M., Cyrklaff M., Fuller S. D. 1991; Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67:145–154 [CrossRef]
    [Google Scholar]
  58. Stewart P. L., Fuller S. D., Burnett R. M. 1993; Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12:2589–2599
    [Google Scholar]
  59. Tsuzuki J., Luftig R. B. 1983; The adenovirus type 5 capsid protein IIIa is phosphorylated during an early stage of infection of HeLa cells. Virology 129:529–533 [CrossRef]
    [Google Scholar]
  60. Tsuzuki J., Luftig R. B. 1985; Evidence for the ubiquitous presence of a protein kinase in human adenoviruses capable of preferentially phosphorylating capsid protein IIIa. Intervirology 23:90–96 [CrossRef]
    [Google Scholar]
  61. Uil T. G., Seki T., Dmitriev I., Kashentseva E., Douglas J. T., Rots M. G., Middeldorp J. M., Curiel D. T. 2003; Generation of an adenoviral vector containing an addition of a heterologous ligand to the serotype 3 fiber knob. Cancer Gene Ther 10:121–124 [CrossRef]
    [Google Scholar]
  62. van Beusechem V. W., van Rijswijk A. L. C. T., van Es H. H. G., Haisma H. J., Pinedo H. M., Gerritsen W. R. 2000; Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 7:1940–1946 [CrossRef]
    [Google Scholar]
  63. van Oostrum J., Burnett R. M. 1985; Molecular composition of the adenovirus type 2 virion. J Virol 56:439–448
    [Google Scholar]
  64. Vellekamp G., Porter F. W., Sutjipto S. 9 other authors 2001; Empty capsids in column-purified recombinant adenovirus preparations. Hum Gene Ther 12:1923–1936 [CrossRef]
    [Google Scholar]
  65. Vellinga J., Rabelink M. J. W. E., Cramer S. J., van den Wollenberg D. J. M., Van der Meulen H., Leppard K. N., Fallaux F. J., Hoeben R. C. 2004; Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 78:3470–3479 [CrossRef]
    [Google Scholar]
  66. Vellinga J., van den Wollenberg D. J. M., van der Heijdt S., Rabelink M. J. W. E., Hoeben R. C. 2005; The coiled-coil domain of the adenovirus type 5 protein IX is dispensable for capsid incorporation and thermostability. J Virol 79:3206–3210 [CrossRef]
    [Google Scholar]
  67. Vigne E., Mahfouz I., Dedieu J.-F., Brie A., Perricaudet M., Yeh P. 1999; RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 73:5156–5161
    [Google Scholar]
  68. Vogels R., Zuijdgeest D., van Rijnsoever R. 20 other authors 2003; Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77:8263–8271 [CrossRef]
    [Google Scholar]
  69. Webster A., Hay R. T., Kemp G. 1993; The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72:97–104 [CrossRef]
    [Google Scholar]
  70. Wickham T. J., Roelvink P. W., Brough D. E., Kovesdi I. 1996; Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol 14:1570–1573 [CrossRef]
    [Google Scholar]
  71. Wiethoff C. M., Wodrich H., Gerace L., Nemerow G. R. 2005; Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79:1992–2000 [CrossRef]
    [Google Scholar]
  72. Wodrich H., Guan T., Cingolani G., Von Seggern D., Nemerow G., Gerace L. 2003; Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. EMBO J 22:6245–6255 [CrossRef]
    [Google Scholar]
  73. Wu H., Han T., Belousova N., Krasnykh V., Kashentseva E., Dmitriev I., Kataram M., Mahasreshti P. J., Curiel D. T. 2005; Identification of sites in adenovirus hexon for foreign peptide incorporation. J Virol 79:3382–3390 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80877-0
Loading
/content/journal/jgv/10.1099/vir.0.80877-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error