1887

Abstract

(PVX) encodes three movement proteins, TGBp1, TGBp2 and TGBp3. The 8 kDa TGBp3 is a membrane-embedded protein that has an N-terminal hydrophobic sequence segment and a hydrophilic C terminus. TGBp3 mutants with deletions in the C-terminal hydrophilic region retain the ability to be targeted to cell peripheral structures and to support limited PVX cell-to-cell movement, suggesting that the basic TGBp3 functions are associated with its N-terminal transmembrane region. Fusion of green fluorescent protein to the TGBp3 N terminus abrogates protein activities in intracellular trafficking and virus movement. The intracellular transport of TGBp3 from sites of its synthesis in the rough endoplasmic reticulum (ER) to ER-derived peripheral bodies involves a non-conventional COPII-independent pathway. However, integrity of the C-terminal hydrophilic sequence is required for entrance to this non-canonical route.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80865-0
2005-08-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862379.html?itemId=/content/journal/jgv/10.1099/vir.0.80865-0&mimeType=html&fmt=ahah

References

  1. Adams, M. J., Antoniw, J. F., Bar-Joseph, M. & 7 other authors ( 2004; ). The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol 149, 1045–1060.
    [Google Scholar]
  2. Andreeva, A. V., Zheng, H., Saint-Jore, C. M., Kutuzov, M. A., Evans, D. E. & Hawes, C. R. ( 2000; ). Organization of transport from endoplasmic reticulum to Golgi in higher plants. Biochem Soc Trans 28, 505–512.[CrossRef]
    [Google Scholar]
  3. Angell, S. M., Davies, C. & Baulcombe, D. C. ( 1996; ). Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216, 197–201.[CrossRef]
    [Google Scholar]
  4. Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V. & Poljakov, V. Y. ( 2000; ). The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271, 259–263.[CrossRef]
    [Google Scholar]
  5. Barlowe, C. ( 2003; ). Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol 13, 295–300.[CrossRef]
    [Google Scholar]
  6. Batten, J. S., Yoshinari, S. & Hemenway, C. ( 2003; ). Potato virus X: a model system for virus replication, movement and gene expression. Mol Plant Pathol 4, 125–131.[CrossRef]
    [Google Scholar]
  7. Boevink, P., Oparka, K., Santa Cruz, S., Martin, B., Betteridge, A. & Hawes, C. ( 1998; ). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15, 441–447.[CrossRef]
    [Google Scholar]
  8. Bonifacino, J. S. & Lippincott-Schwartz, J. ( 2003; ). Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4, 409–414.[CrossRef]
    [Google Scholar]
  9. Brandizzi, F., Fricker, M. & Hawes, C. ( 2002; ). A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol 3, 520–530.[CrossRef]
    [Google Scholar]
  10. Brandizzi, F., Irons, S. L., Johansen, J., Kotzer, A. & Neumann, U. ( 2004; ). GFP is the way to glow: bioimaging of the plant endomembrane system. J Microsc 214, 138–158.[CrossRef]
    [Google Scholar]
  11. Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. ( 1996; ). Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669–1681.[CrossRef]
    [Google Scholar]
  12. Chapman, S., Hills, G., Watts, J. & Baulcombe, D. ( 1992; ). Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191, 223–230.[CrossRef]
    [Google Scholar]
  13. Cowan, G. H., Lioliopoulou, F., Ziegler, A. & Torrance, L. ( 2002; ). Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298, 106–115.[CrossRef]
    [Google Scholar]
  14. Crawford, K. M. & Zambryski, P. C. ( 2001; ). Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological stages. Plant Physiol 125, 1802–1812.[CrossRef]
    [Google Scholar]
  15. daSilva, L. L., Snapp, E. L., Denecke, J., Lippincott-Schwartz, J., Hawes, C. & Brandizzi, F. ( 2004; ). Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16, 1753–1771.[CrossRef]
    [Google Scholar]
  16. Delmas, O., Gardet, A., Chwetzoff, S., Breton, M., Cohen, J., Colard, O., Sapin, C. & Trugnan, G. ( 2004; ). Different ways to reach the top of a cell. Analysis of rotavirus assembly and targeting in human intestinal cells reveals an original raft-dependent, Golgi-independent apical targeting pathway. Virology 327, 157–161.[CrossRef]
    [Google Scholar]
  17. Dirnberger, D., Bencur, P., Mach, L. & Steinkellner, H. ( 2002; ). The Golgi localization of Arabidopsis thaliana β1,2-xylosyltransferase in plant cells is dependent on its cytoplasmic and transmembrane sequences. Plant Mol Biol 50, 273–281.[CrossRef]
    [Google Scholar]
  18. Dolja, V. V., Grama, D. P., Morozov, S. Yu. & Atabekov, J. G. ( 1987; ). Potato virus X-related single- and double stranded RNA. Characterization and identification of terminal structures. FEBS Lett 214, 308–312.[CrossRef]
    [Google Scholar]
  19. Erhardt, M., Morant, M., Ritzenthaler, C., Stussi-Garaud, C., Guilley, H., Richards, K. E., Jonard, G., Bouzoubaa, S. & Gilmer, D. ( 2000; ). P42 movement protein of beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. Mol Plant Microbe Interact 13, 520–528.[CrossRef]
    [Google Scholar]
  20. Fedorkin, O. N., Merits, A., Lucchesi, J., Solovyev, A. G., Saarma, M., Morozov, S. Yu. & Mäkinen, K. ( 2000; ). Complementation of the movement-deficient mutations in potato virus X: potyvirus coat protein mediates cell-to-cell trafficking of C-terminal truncation but not deletion mutant of potexvirus coat protein. Virology 270, 31–42.[CrossRef]
    [Google Scholar]
  21. Fedorkin, O. N., Solovyev, A. G., Yelina, N. E., Zamyatnin, A. A., Jr, Zinovkin, R. A., Mäkinen, K., Schiemann, J. & Morozov, S. Yu. ( 2001; ). Cell-to-cell movement of potato virus X involves distinct functions of the coat protein. J Gen Virol 82, 449–458.
    [Google Scholar]
  22. Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K. & Angell, S. ( 2003; ). TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant Microbe Interact 16, 132–140.[CrossRef]
    [Google Scholar]
  23. Goder, V. & Spiess, M. ( 2003; ). Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J 22, 3645–3653.[CrossRef]
    [Google Scholar]
  24. Gómez, G. & Pallás, V. ( 2004; ). A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA. J Virol 78, 10104–10110.[CrossRef]
    [Google Scholar]
  25. Gorshkova, E. N., Erokhina, T. N., Stroganova, T. A., Yelina, N. E., Zamyatnin, A. A., Jr, Kalinina, N. O., Schiemann, J., Solovyev, A. G. & Morozov, S. Y. ( 2003; ). Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 84, 985–994.[CrossRef]
    [Google Scholar]
  26. Haupt, S., Cowan, G. H., Ziegler, A., Roberts, A. G., Oparka, K. J. & Torrance, L. ( 2005; ). Two plant–viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17, 164–181.[CrossRef]
    [Google Scholar]
  27. Hawes, C. ( 2005; ). Cell biology of the plant Golgi apparatus. New Phytol 165, 29–44.
    [Google Scholar]
  28. Heinlein, M. & Epel, ( 2004; ). Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235, 93–164.
    [Google Scholar]
  29. Howard, A. R., Heppler, M. L., Ju, H.-J., Krishnamurthy, K., Payton, M. E. & Verchot-Lubicz, J. ( 2004; ). Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328, 185–197.[CrossRef]
    [Google Scholar]
  30. Hsu, H.-T., Hsu, Y.-H., Bi, I.-P., Lin, N.-S. & Chang, B.-Y. ( 2004; ). Biological functions of the cytoplasmic TGBp1 inclusions of bamboo mosaic potexvirus. Arch Virol 149, 1027–1035.[CrossRef]
    [Google Scholar]
  31. Johnson, J. A., Bragg, J. N., Lawrence, D. M. & Jackson, A. O. ( 2003; ). Sequence elements controlling expression of Barley stripe mosaic virus subgenomic RNAs in vivo. Virology 313, 66–80.[CrossRef]
    [Google Scholar]
  32. Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Maiss, E., Korpela, T., Morozov, S. Yu. & Atabekov, J. G. ( 1996; ). Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett 397, 75–78.[CrossRef]
    [Google Scholar]
  33. Kalinina, N. O., Rakitina, D. A., Yelina, N. E. & 9 other authors ( 2001; ). RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J Gen Virol 82, 2569–2578.
    [Google Scholar]
  34. Kalinina, N. O., Rakitina, D. A., Solovyev, A. G., Schiemann, J. & Morozov, S. Yu. ( 2002; ). RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296, 321–329.[CrossRef]
    [Google Scholar]
  35. Kim, J. Y., Yuan, Z., Cilia, M., Khalfan-Jagani, Z. & Jackson, D. ( 2002; ). Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci U S A 99, 4103–4108.[CrossRef]
    [Google Scholar]
  36. Koenig, R., Pleij, C. W., Loss, S., Burgermeister, W., Aust, H. & Schiemann, J. ( 2004; ). Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae. Arch Virol 149, 903–914.[CrossRef]
    [Google Scholar]
  37. Koonin, E. V. & Dolja, V. V. ( 1993; ). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28, 375–430.[CrossRef]
    [Google Scholar]
  38. Krishnamurthy, K., Mitra, R., Payton, M. E. & Verchot-Lubicz, J. ( 2002; ). Cell-to-cell movement of the PVX 12K, 8K, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25K protein. Virology 300, 269–281.[CrossRef]
    [Google Scholar]
  39. Krishnamurthy, K., Heppler, M., Mitra, R., Blancaflor, E., Payton, M., Nelson, R. S. & Verchot-Lubicz, J. ( 2003; ). The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309, 135–151.[CrossRef]
    [Google Scholar]
  40. Lalonde, S., Weise, A., Walsh, R. P., Ward, J. M. & Frommer, W. B. ( 2003; ). Fusion to GFP blocks intercellular trafficking of the sucrose transporter SUT1 leading to accumulation in companion cells. BMC Plant Biol 3, 8.[CrossRef]
    [Google Scholar]
  41. Lauber, E., Jonard, G., Richards, K. & Guilley, H. ( 2005; ). Nonregulated expression of TGBp3 of hordei-like viruses but not of potex-like viruses inhibits beet necrotic yellow vein virus cell-to-cell movement. Arch Virol (in press).
    [Google Scholar]
  42. Lawrence, D. M. & Jackson, A. O. ( 2001; ). Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virusx. J Virol 75, 8712–8723.[CrossRef]
    [Google Scholar]
  43. Lee, J. Y., Yoo, B. C., Rojas, M. R., Gomez-Ospina, N., Staehelin, L. A. & Lucas, W. J. ( 2003; ). Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299, 392–396.[CrossRef]
    [Google Scholar]
  44. Letourneur, F. & Cosson, P. ( 1998; ). Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains. J Biol Chem 273, 33273–33278.[CrossRef]
    [Google Scholar]
  45. Lough, T. J., Shash, K., Xoconostle-Cazares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. & Lucas, W. J. ( 1998; ). Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11, 801–814.[CrossRef]
    [Google Scholar]
  46. Lough, T. J., Netzler, N. E., Emerson, S. J., Sutherland, P., Carr, F., Beck, D. L., Lucas, W. J. & Forster, R. L. ( 2000; ). Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13, 962–974.[CrossRef]
    [Google Scholar]
  47. Lucas, W. J. ( 1999; ). Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. J Exp Bot 50, 979–987.[CrossRef]
    [Google Scholar]
  48. Lucas, W. J. & Lee, J.-Y. ( 2004; ). Plasmodesmata as a supracellular control network in plants. Nature Rev Mol Cell Biol 5, 712–726.[CrossRef]
    [Google Scholar]
  49. Mitra, R., Krishnamurthy, K., Blancaflor, E., Payton, M., Nelson, R. S. & Verchot-Lubicz, J. ( 2003; ). The Potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312, 35–48.[CrossRef]
    [Google Scholar]
  50. Mitsuhashi, N., Hayashi, Y., Koumoto, Y., Shimada, T., Fukasawa-Akada, T., Nishimura, M. & Hara-Nishimura, I. ( 2001; ). A novel membrane protein that is transported to protein storage vacuoles via precursor-accumulating vesicles. Plant Cell 13, 2361–2372.[CrossRef]
    [Google Scholar]
  51. Morozov, S. Yu. & Solovyev, A. G. ( 1999; ). Genome organization in RNA viruses. In Molecular Biology of Plant Viruses, pp. 47–98. Edited by C. L. Mandahar. Boston/Dordrecht/London: Kluwer Academic.
  52. Morozov, S. Y. & Solovyev, A. G. ( 2003; ). Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84, 1351–1366.[CrossRef]
    [Google Scholar]
  53. Morozov, S. Yu., Lukasheva, L. I., Chernov, B. K., Skryabin, K. G. & Atabekov, J. G. ( 1987; ). Nucleotide sequence of the open reading frames adjacent to the coat protein cistron in potato virus X genome. FEBS Lett 213, 438–442.[CrossRef]
    [Google Scholar]
  54. Morozov, S. Y., Dolja, V. V. & Atabekov, J. G. ( 1989; ). Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J Mol Evol 29, 52–62.[CrossRef]
    [Google Scholar]
  55. Morozov, S. Y., Miroshnichenko, N. A., Zelenina, D. A., Fedorkin, O. N., Solovijev, A. G., Lukasheva, L. I. & Atabekov, J. G. ( 1990; ). Expression of RNA transcripts of potato virus X full-length and subgenomic cDNAs. Biochimie 72, 677–684.[CrossRef]
    [Google Scholar]
  56. Morozov, S. Y., Miroshnichenko, N. A., Solovyev, A. G., Zelenina, D. A., Fedorkin, O. N., Lukasheva, L. I., Grachev, S. A. & Chernov, B. K. ( 1991; ). In vitro membrane binding of the translation products of the carlavirus 7-kDa protein genes. Virology 183, 782–785.[CrossRef]
    [Google Scholar]
  57. Morozov, S. Y., Fedorkin, O. N., Jüttner, G., Schiemann, J., Baulcombe, D. C. & Atabekov, J. G. ( 1997; ). Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol 78, 2077–2083.
    [Google Scholar]
  58. Morozov, S. Y., Solovyev, A. G., Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Schiemann, J. & Atabekov, J. G. ( 1999; ). Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260, 55–63.[CrossRef]
    [Google Scholar]
  59. Murphy, A. S., Bandyopadhyay, A., Holstein, S. E. & Peer, W. A. ( 2005; ). Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56, 221–251.[CrossRef]
    [Google Scholar]
  60. Nebenführ, A. ( 2002; ). Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Curr Opin Plant Biol 5, 507–512.[CrossRef]
    [Google Scholar]
  61. Neumann, U., Brandizzi, F. & Hawes, C. ( 2003; ). Protein transport in plant cells: in and out of the Golgi. Ann Bot 92, 167–180.[CrossRef]
    [Google Scholar]
  62. Oparka, K. J. ( 2004; ). Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9, 33–41.
    [Google Scholar]
  63. Pasqualato, S., Renault, L. & Cherfils, J. ( 2002; ). Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep 3, 1035–1041.[CrossRef]
    [Google Scholar]
  64. Rayner, J. C. & Pelham, H. R. ( 1997; ). Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J 16, 1832–1841.[CrossRef]
    [Google Scholar]
  65. Reggiori, F., Black, M. W. & Pelham, H. R. B. ( 2000; ). Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol Biol Cell 11, 3737–3749.[CrossRef]
    [Google Scholar]
  66. Ritzenthaler, C., Nebenführ, A., Movafeghi, A., Stussi-Garaud, C., Behnia, L., Pimpl, P., Staehelin, L. A. & Robinson, D. G. ( 2002; ). Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14, 237–261.[CrossRef]
    [Google Scholar]
  67. Roberts, A. G. & Oparka, K. J. ( 2003; ). Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26, 103–124.[CrossRef]
    [Google Scholar]
  68. Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V. & Atabekov, J. G. ( 2003; ). Linear remodeling of helical virus by movement protein binding. J Mol Biol 333, 565–572.[CrossRef]
    [Google Scholar]
  69. Saint-Jore, C. M., Evins, J., Batoko, H., Brandizzi, F., Moore, I. & Hawes, C. ( 2002; ). Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29, 661–678.[CrossRef]
    [Google Scholar]
  70. Santa Cruz, S., Roberts, A. G., Prior, D. A. M., Chapman, S. & Oparka, K. J. ( 1998a; ). Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. Plant Cell 10, 495–510.[CrossRef]
    [Google Scholar]
  71. Santa Cruz, S., Boevink, P., Duncan, G., Roberts, A., Prior, D. & Oparka, K. ( 1998b; ). Probing the virus long-distance transport pathway. In Scottish Crop Research Institute, Annual Report 1997/98, pp.114–117. Invergowrie, UK: Scottish Crop Research Institute.
  72. Siddiqi, S. A., Gorelick, F. S., Mahan, J. T. & Mansbach, C. M. ( 2003; ). COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J Cell Sci 116, 415–427.[CrossRef]
    [Google Scholar]
  73. Solovyev, A. G., Savenkov, E. I., Agranovsky, A. A. & Morozov, S. Y. ( 1996; ). Comparisons of the genomic cis-elements and coding regions in RNAβ components of the hordeiviruses barley stripe mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219, 9–18.[CrossRef]
    [Google Scholar]
  74. Solovyev, A. G., Stroganova, T. A., Zamyatnin, A. A., Jr, Fedorkin, O. N., Schiemann, J. & Morozov, S. Yu. ( 2000; ). Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269, 113–127.[CrossRef]
    [Google Scholar]
  75. Szczesna-Skorupa, E. & Kemper, B. ( 2001; ). The juxtamembrane sequence of cytochrome P-450 2C1 contains an endoplasmic reticulum retention signal. J Biol Chem 276, 45009–45014.[CrossRef]
    [Google Scholar]
  76. Tamai, A. & Meshi, T. ( 2001; ). Cell-to-cell movement of Potato virus X: the role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Mol Plant Microbe Interact 14, 1158–1167.[CrossRef]
    [Google Scholar]
  77. Tamura, K., Yamada, K., Shimada, T. & Hara-Nishimura, I. ( 2004; ). Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. Plant J 39, 393–402.[CrossRef]
    [Google Scholar]
  78. Thomas, C. L. & Maule, A. J. ( 2000; ). Limitations on the use of fused green fluorescent protein to investigate structure–function relationships for the cauliflower mosaic virus movement protein. J Gen Virol 81, 1851–1855.
    [Google Scholar]
  79. Töpfer, R., Schell, J. & Steinbiss, H. H. ( 1988; ). Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16, 8725.[CrossRef]
    [Google Scholar]
  80. Törmäkangas, K., Hadlington, J. L., Pimpl, P., Hillmer, S., Brandizzi, F., Teeri, T. H. & Denecke, J. ( 2001; ). A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13, 2021–2032.[CrossRef]
    [Google Scholar]
  81. Tzfira, T., Rhee, Y., Chen, M. H., Kunik, T. & Citovsky, V. ( 2000; ). Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54, 187–219.[CrossRef]
    [Google Scholar]
  82. van Vliet, C., Thomas, E. C., Merino-Trigo, A., Teasdale, R. D. & Gleeson, P. A. ( 2003; ). Intracellular sorting and transport of proteins. Prog Biophys Mol Biol 83, 1–45.[CrossRef]
    [Google Scholar]
  83. Verchot, J., Angell, S. M. & Baulcombe, D. C. ( 1998; ). In vivo translation of the triple gene block of potato virus X requires two subgenomic mRNAs. J Virol 72, 8316–8320.
    [Google Scholar]
  84. Verchot-Lubicz, J. ( 2005; ). A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact 18, 283–290.[CrossRef]
    [Google Scholar]
  85. Waigmann, E., Ueki, S., Trutnyeva, K. & Citovsky, V. ( 2004; ). The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23, 195–250.[CrossRef]
    [Google Scholar]
  86. Watson, R. T. & Pessin, J. E. ( 2001; ). Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am J Physiol Cell Physiol 281, C215–C223.
    [Google Scholar]
  87. Wung, C. H., Hsu, Y. H., Liou, D. Y., Huang, W. C., Lin, N. S. & Chang, B. Y. ( 1999; ). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic virus. J Gen Virol 80, 1119–1126.
    [Google Scholar]
  88. Yang, Y., Ding, B., Baulcombe, D. C. & Verchot, J. ( 2000; ). Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. Mol Plant Microbe Interact 13, 599–605.[CrossRef]
    [Google Scholar]
  89. Zamyatnin, A. A., Jr, Solovyev, A. G., Sablina, A. A. & 7 other authors ( 2002; ). Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J Gen Virol 83, 651–662.
    [Google Scholar]
  90. Zamyatnin, A. A., Jr, Solovyev, A. G., Savenkov, E. I., Germundsson, A., Sandgren, M., Valkonen, J. P. T. & Morozov, S. Y. ( 2004; ). Transient coexpression of individual genes encoded by the triple gene block of potato mop-top virus reveals requirements for TGBp1 trafficking. Mol Plant Microbe Interact 17, 921–930.[CrossRef]
    [Google Scholar]
  91. Zhou, H. & Jackson, A. O. ( 1996; ). Expression of the barley stripe mosaic virus RNAβ “triple gene block”. Virology 216, 367–379.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80865-0
Loading
/content/journal/jgv/10.1099/vir.0.80865-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error