1887

Abstract

A new dsRNA was isolated from a isolate from Douglas fir. Sequence analysis showed the dsRNA to consist of 13 883 bp and to contain a single open reading frame with the potential to encode a polyprotein of 4548 aa. This polyprotein contained amino acid sequence motifs characteristic of virus RNA-dependent RNA polymerases (RdRps) in its C-terminal region and motifs characteristic of RNA helicases in its N-terminal region. These sequence motifs were related to corresponding motifs in plant viruses in the genus . In phylogenetic trees constructed from the RdRp and helicase motifs of a range of ssRNA and dsRNA viruses, the RdRp and helicase sequences clustered with those of the plant endornaviruses with good bootstrap support. The properties of the dsRNA are consistent with its being classified as the first non-plant member of the genus , for which we propose the name phytophthora endornavirus 1 (PEV1). A region between the RdRp and helicase domains of the PEV1 protein had significant amino acid sequence similarity to UDP glycosyltransferases (UGTs). Two sequence motifs were identified, one characteristic of all UGTs and the other characteristic of sterol UGTs. The PEV1 UGT would be the first for an RNA virus, although ecdysteroid UGT genes have been found in many baculoviruses. The PEV1 UGT was only distantly related to baculovirus ecdysteroid UGTs, which belong to a family distinct from the sterol UGTs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80808-0
2005-05-01
2024-11-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861561.html?itemId=/content/journal/jgv/10.1099/vir.0.80808-0&mimeType=html&fmt=ahah

References

  1. Bruenn J. A. 1991; Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19:217–226 [CrossRef]
    [Google Scholar]
  2. Bruenn J. A. 1993; A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Res 21:5667–5669 [CrossRef]
    [Google Scholar]
  3. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251
    [Google Scholar]
  4. Cavalier-Smith T. 1997; Sagenista and Bigyra , two phyla of heterotrophic heterokont Chromists. Arch Protistenk 148:253–267 [CrossRef]
    [Google Scholar]
  5. Dawe A. L., Nuss D. L. 2001; Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35:1–29 [CrossRef]
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  7. Dick M. W. 2001 Stramenopilous Fungi Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  8. Frohman M. A., Dush M. K., Martin G. R. 1988; Rapid production of full-length cDNAs from rare transcripts: amplification using single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85:8998–9002 [CrossRef]
    [Google Scholar]
  9. Fukuhara T., Moriyama H., Nitta T. 1995; The unusual structure of a novel RNA replicon in rice. J Biol Chem 270:18147–18149 [CrossRef]
    [Google Scholar]
  10. Gibbs M. J., Koga R., Moriyama H., Pfeiffer P., Fukuhara T. 2000; Phylogenetic analysis of some large double-stranded RNA replicons from plants suggests they evolved from a defective single-stranded RNA. J Gen Virol 81:227–233
    [Google Scholar]
  11. Gibbs M. J., Pfeiffer P., Fukuhara T. 2004; Genus Endornavirus . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp  603–605 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball A. L. London: Elsevier/Academic Press;
    [Google Scholar]
  12. Habili N., Symons R. H. 1989; Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res 17:9543–9555 [CrossRef]
    [Google Scholar]
  13. Hong Y., Cole T. E., Brasier C. M., Buck K. W. 1998a; Novel structures of two virus-like RNA elements from a diseased isolate of the Dutch elm disease fungus, Ophiostoma novo-ulmi . Virology 242:80–89 [CrossRef]
    [Google Scholar]
  14. Hong Y., Cole T. E., Brasier C. M., Buck K. W. 1998b; Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi , by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome. Virology 246:158–169 [CrossRef]
    [Google Scholar]
  15. Kim Y.-K., Wang Y., Liu Z. M., Kolattukudy P. E. 2002; Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyltranserase, a novel fungal virulence factor. Plant J 30:177–187 [CrossRef]
    [Google Scholar]
  16. Koonin E. V. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206 [CrossRef]
    [Google Scholar]
  17. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430 [CrossRef]
    [Google Scholar]
  18. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292 [CrossRef]
    [Google Scholar]
  19. Latijnhouwers M., Ligterink W., Vleeshouwers V. G. A. A., van West P., Govers F. 2004; A G α subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans . Mol Microbiol 51:925–936 [CrossRef]
    [Google Scholar]
  20. Leipe D. D., Wainwright P. O., Gunderson J. H., Porter D., Patterson D. J., Valois F., Himmerich S., Sogin M. L. 1994; The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis . Phycologia 33:369–377 [CrossRef]
    [Google Scholar]
  21. Li L., Wang C. C. 2004; Capped mRNA with a single nucleotide leader is optimally translated in a primitive eukaryote, Giardia lamblia . J Biol Chem 279:14656–14664 [CrossRef]
    [Google Scholar]
  22. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48
    [Google Scholar]
  23. Mackenzie P. I., Owens I. S., Burchell B. 16 other authors 1997; The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269 [CrossRef]
    [Google Scholar]
  24. Markine-Goriaynoff N., Gillet L., van Etten J. L., Korres H., Verma N., Vanderplasschen A. 2004; Glycosyltranserases encoded by viruses. J Gen Virol 85:2741–2754 [CrossRef]
    [Google Scholar]
  25. Moriyama H., Nitta T. Fukuhara 1995; Double-stranded RNA in rice: a novel RNA replicon in plants. Mol Gen Genet 248:364–369 [CrossRef]
    [Google Scholar]
  26. Moriyama H., Horiuchi H., Koga R., Fukuhara T. 1999; Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. J Biol Chem 274:6882–6888 [CrossRef]
    [Google Scholar]
  27. Newhouse J. R., Tooley P. W., Smith O. P., Fishel R. A. 1992; Characterization of double-stranded RNA in isolates of Phytophthora infestans from Mexico, the Netherlands, and Peru. Phytopathology 82:164–169 [CrossRef]
    [Google Scholar]
  28. Nuss D. L., Hillman B. I., Rigling D., Suzuki N. 2004; Family Hypoviridae . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp  597–601 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball A. L. London: Elsevier/Academic Press;
    [Google Scholar]
  29. O'Reilly D. R. 1995; Baculovirus-encoded ecdysteroid UDP-glucosyltransferase. Insect Biochem Mol Biol 25:541–550 [CrossRef]
    [Google Scholar]
  30. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  31. Patterson D. J. 1989; Stramenopiles: chromophytes from a protistan perspective. In The Chromophyte Algae: Problems and Perspectives pp  357–379 Edited by Green J. C., Leadbetter B. S. C., Diver W. L. Oxford: Clarendon Press;
    [Google Scholar]
  32. Pfeiffer P. 1998; Nucleotide sequence, genetic organization and expression strategy of the double-stranded RNA associated with the ‘447’ cytoplasmic male sterility trait in Vicia faba . J Gen Virol 79:2349–2358
    [Google Scholar]
  33. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874
    [Google Scholar]
  34. Ristaino J. B., Madritch M., Trout C. L., Parra G. 1998; PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora . Appl Environ Microbiol 64:948–954
    [Google Scholar]
  35. Rogers H. J., Buck K. W., Brasier C. M. 1986; Transmission of double-stranded RNA and a disease factor in Ophiostoma ulmi . Plant Pathol 35:277–287 [CrossRef]
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  37. Schaefer B. C. 1995; Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem 227:255–273 [CrossRef]
    [Google Scholar]
  38. Seipelt J., Guarne A., Bergmann E., James M., Sommergruber W., Fita I., Skern T. 1999; The structure of picornaviral proteinases. Virus Res 62:159–168 [CrossRef]
    [Google Scholar]
  39. Sweigard J. A., Carroll A. M., Farrall L., Chumley F. G., Valent B. 1998; Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412 [CrossRef]
    [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  41. Tooley P. W., Hewings A. D., Falkenstein K. F. 1989; Detection of double-stranded RNA in Phytophthora infestans . Phytopathology 79:470–474 [CrossRef]
    [Google Scholar]
  42. Wakarchuk D. A., Hamilton R. I. 1985; Cellular double-stranded RNA in Phaseolus vulgaris . Plant Mol Biol 5:55–63 [CrossRef]
    [Google Scholar]
  43. Wakarchuk D. A., Hamilton R. I. 1990; Partial nucleotide sequence from enigmatic dsRNAs in Phaseolus vulgaris . Plant Mol Biol 14:637–639 [CrossRef]
    [Google Scholar]
  44. Warnecke D., Erdmann R., Fahl A., Hube B., Müller F., Zank T., Zähringer U., Heinz E. 1999; Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae , Candida albicans , Pichia pastoris , and Dictyostelium discoides . J Biol Chem 274:13048–13059 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80808-0
Loading
/content/journal/jgv/10.1099/vir.0.80808-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error