Susceptibility of B lymphocytes to adenovirus type 5 infection is dependent upon both coxsackie–adenovirus receptor and v5 integrin expression Free

Abstract

Human lymphocytes are resistant to genetic modification, particularly from recombinant adenoviruses, thus hampering the analysis of gene function using adenoviral vectors. This study engineered an Epstein–Barr virus-transformed B-lymphoblastoid cell line permissive to adenovirus infection and elucidated key roles for both the coxsackie–adenovirus receptor and v5 integrin in mediating entry of adenoviruses into these cells. The work identified a strategy for engineering B cells to become susceptible to adenovirus infection and showed that such a strategy could be useful for the introduction of genes to alter lymphoblastoid-cell gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80806-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861669.html?itemId=/content/journal/jgv/10.1099/vir.0.80806-0&mimeType=html&fmt=ahah

References

  1. Arnberg N., Edlund K., Kidd A. H., Wadell G. 2000; Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74:42–48 [CrossRef]
    [Google Scholar]
  2. Ben-Bassat H. N., Goldblum S., Mitrani T. 7 other authors 1977; Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like” malignant lymphoma (line D.G.-75). Int J Cancer 19:27–33 [CrossRef]
    [Google Scholar]
  3. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 [CrossRef]
    [Google Scholar]
  4. Bewley M. C., Springer K., Zhang Y. B., Freimuth P., Flanagan J. M. 1999; Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583 [CrossRef]
    [Google Scholar]
  5. Buttgereit P., Weineck S., Ropke G., Marten A., Brand K., Heinicke T., Caselmann W. H., Huhn D., Schmidt-Wolf I. G. 2000; Efficient gene transfer into lymphoma cells using adenoviral vectors combined with lipofection. Cancer Gene Ther 7:1145–1155 [CrossRef]
    [Google Scholar]
  6. Cantwell M. J., Sharma S., Friedmann T., Kipps T. J. 1996; Adenovirus vector infection of chronic lymphocytic leukemia B cells. Blood 88:4676–4683
    [Google Scholar]
  7. Chretien I., Marcuz A., Courtet M., Katevuo K., Vainio O., Heath J. K., White S. J., Du Pasquier L. 1998; CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 28:4094–4104 [CrossRef]
    [Google Scholar]
  8. Cohen C. J., Shieh J. T., Pickles R. J., Okegawa T., Hsieh J. T., Bergelson J. M. 2001; The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98:15191–15196 [CrossRef]
    [Google Scholar]
  9. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 [CrossRef]
    [Google Scholar]
  10. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933
    [Google Scholar]
  11. Fuxe J., Liu L., Malin S., Philipson L., Collins V. P., Pettersson R. F. 2003; Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 103:723–729 [CrossRef]
    [Google Scholar]
  12. Honda T., Saitoh H., Masuko M. 8 other authors 2000; The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 77:19–28 [CrossRef]
    [Google Scholar]
  13. Hong S. S., Karayan L., Tournier J., Curiel D. T., Boulanger P. A. 1997; Adenovirus type 5 fiber knob binds to MHC class I α 2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 16:2294–2306 [CrossRef]
    [Google Scholar]
  14. Hurez V., Dzialo-Hatton R., Oliver J., Matthews R. J., Weaver C. T. 2002; Efficient adenovirus-mediated gene transfer into primary T cells and thymocytes in a new coxsackie/adenovirus receptor transgenic model. BMC Immunol 3:4 [CrossRef]
    [Google Scholar]
  15. Leon R. P., Hedlund T., Meech S. J., Li S., Schaack J., Hunger S. P., Duke R. C., DeGregori J. 1998; Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci U S A 95:13159–13164 [CrossRef]
    [Google Scholar]
  16. Mathias P., Wickham T., Moore M., Nemerow G. 1994; Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 68:6811–6814
    [Google Scholar]
  17. McDonald D., Stockwin L., Matzow T., Blair Zajdel M. E., Blair G. E. 1999; Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Ther 6:1512–1519 [CrossRef]
    [Google Scholar]
  18. Prince H. M., Dessureault S., Gallinger S., Krajden M., Sutherland D. R., Addison C., Zhang Y., Graham F. L., Stewart A. K. 1998; Efficient adenovirus-mediated gene expression in malignant human plasma cells: relative lymphoid cell resistance. Exp Hematol 26:27–36
    [Google Scholar]
  19. Rowe M., Jones M. 2001; Detection of EBV latent proteins by Western Blotting. In Methods in Molecular Biology vol 174 Epstein-Barr, Virus Protocols pp. 229–242 Edited by Wilson J. B. Totowa: Humana Press;
    [Google Scholar]
  20. Rowe M., Lear A. L., Croom-Carter D., Davies A. H., Rickinson A. B. 1992; Three pathways of Epstein–Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66:122–131
    [Google Scholar]
  21. Rowe M., Khanna R., Jacob C. A., Argaet V., Kelly A., Powis S., Belich M., Croom-Carter D., Lee S., Burrows S. R. 10 other authors 1995; Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein–Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25:1374–1384 [CrossRef]
    [Google Scholar]
  22. Sample J., Kieff E. 1990; Transcription of the Epstein–Barr virus genome during latency in growth-transformed lymphocytes. J Virol 64:1667–1674
    [Google Scholar]
  23. Segerman A., Mei Y.-F., Wadell G. 2000; Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol 74:1457–1467 [CrossRef]
    [Google Scholar]
  24. Silver L., Anderson C. W. 1988; Interaction of human adenovirus serotype 2 with human lymphoid cells. Virology 165:377–387 [CrossRef]
    [Google Scholar]
  25. Spiller O. B., Goodfellow I. G., Evans D. J., Hinchliffe S. J., Morgan B. P. 2002; Coxsackie B viruses that use human DAF as a receptor infect pig cells via pig CAR and do not use pig DAF. J Gen Virol 83:45–52
    [Google Scholar]
  26. Stevenson S. C., Rollence M., White B., Weaver L., McClelland A. 1995; Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J Virol 69:2850–2857
    [Google Scholar]
  27. Stockwin L. H., Matzow T., Georgopoulos N. T., Stanbridge L. J., Jones S. V., Martin I. G., Blair-Zajdel M. E., Blair G. E. 2002; Engineered expression of the Coxsackie B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. J Immunol Methods 259:205–215 [CrossRef]
    [Google Scholar]
  28. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. J Virol 63:445–449
    [Google Scholar]
  29. Takayama K., Ueno H., Pei X. H., Nakanishi Y., Yatsunami J., Hara N. 1998; The levels of integrin α v β 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells. Gene Ther 5:361–368 [CrossRef]
    [Google Scholar]
  30. van Raaij M. J., Chouin E., van der Zandt H., Bergelson J. M., Cusack S. 2000; Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1·7 Å resolution. Structure Fold Des 8:1147–1155 [CrossRef]
    [Google Scholar]
  31. von Seggern D. J., Huang S., Fleck S. K., Stevenson S. C., Nemerow G. R. 2000; Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein–Barr virus-transformed B cells. J Virol 74:354–362 [CrossRef]
    [Google Scholar]
  32. Wang X., Bergelson J. M. 1999; Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol 73:2559–2562
    [Google Scholar]
  33. White R. E., Wade-Martins R., James M. R. 2002; Infectious delivery of 120-kilobase genomic DNA by an Epstein–Barr virus amplicon vector. Mol Ther 5:427–435 [CrossRef]
    [Google Scholar]
  34. Wickham T. J. 2003; Ligand-directed targeting of genes to the site of disease. Nat Med 9:135–139 [CrossRef]
    [Google Scholar]
  35. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins α v β 3 and α v β 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319 [CrossRef]
    [Google Scholar]
  36. Wilkinson G. W., Akrigg A. 1992; Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res 20:2233–2239 [CrossRef]
    [Google Scholar]
  37. Yanagawa B., Spiller O. B., Proctor D. G., Choy J., Luo H., Zhang H. M., Suarez A., Yang D., McManus B. M. 2004; Soluble recombinant coxsackievirus and adenovirus receptor abrogates coxsackievirus B3-mediated pancreatitis and myocarditis in mice. J Infect Dis 189:1431–1439 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80806-0
Loading
/content/journal/jgv/10.1099/vir.0.80806-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed