1887

Abstract

Human lymphocytes are resistant to genetic modification, particularly from recombinant adenoviruses, thus hampering the analysis of gene function using adenoviral vectors. This study engineered an Epstein–Barr virus-transformed B-lymphoblastoid cell line permissive to adenovirus infection and elucidated key roles for both the coxsackie–adenovirus receptor and v5 integrin in mediating entry of adenoviruses into these cells. The work identified a strategy for engineering B cells to become susceptible to adenovirus infection and showed that such a strategy could be useful for the introduction of genes to alter lymphoblastoid-cell gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80806-0
2005-06-01
2020-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861669.html?itemId=/content/journal/jgv/10.1099/vir.0.80806-0&mimeType=html&fmt=ahah

References

  1. Arnberg N., Edlund K., Kidd A. H., Wadell G. 2000; Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74:42–48 [CrossRef]
    [Google Scholar]
  2. Ben-Bassat H. N., Goldblum S., Mitrani T. 7 other authors 1977; Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like” malignant lymphoma (line D.G.-75). Int J Cancer 19:27–33 [CrossRef]
    [Google Scholar]
  3. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 [CrossRef]
    [Google Scholar]
  4. Bewley M. C., Springer K., Zhang Y. B., Freimuth P., Flanagan J. M. 1999; Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583 [CrossRef]
    [Google Scholar]
  5. Buttgereit P., Weineck S., Ropke G., Marten A., Brand K., Heinicke T., Caselmann W. H., Huhn D., Schmidt-Wolf I. G. 2000; Efficient gene transfer into lymphoma cells using adenoviral vectors combined with lipofection. Cancer Gene Ther 7:1145–1155 [CrossRef]
    [Google Scholar]
  6. Cantwell M. J., Sharma S., Friedmann T., Kipps T. J. 1996; Adenovirus vector infection of chronic lymphocytic leukemia B cells. Blood 88:4676–4683
    [Google Scholar]
  7. Chretien I., Marcuz A., Courtet M., Katevuo K., Vainio O., Heath J. K., White S. J., Du Pasquier L. 1998; CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 28:4094–4104 [CrossRef]
    [Google Scholar]
  8. Cohen C. J., Shieh J. T., Pickles R. J., Okegawa T., Hsieh J. T., Bergelson J. M. 2001; The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98:15191–15196 [CrossRef]
    [Google Scholar]
  9. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 [CrossRef]
    [Google Scholar]
  10. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933
    [Google Scholar]
  11. Fuxe J., Liu L., Malin S., Philipson L., Collins V. P., Pettersson R. F. 2003; Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 103:723–729 [CrossRef]
    [Google Scholar]
  12. Honda T., Saitoh H., Masuko M. 8 other authors 2000; The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 77:19–28 [CrossRef]
    [Google Scholar]
  13. Hong S. S., Karayan L., Tournier J., Curiel D. T., Boulanger P. A. 1997; Adenovirus type 5 fiber knob binds to MHC class I α 2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 16:2294–2306 [CrossRef]
    [Google Scholar]
  14. Hurez V., Dzialo-Hatton R., Oliver J., Matthews R. J., Weaver C. T. 2002; Efficient adenovirus-mediated gene transfer into primary T cells and thymocytes in a new coxsackie/adenovirus receptor transgenic model. BMC Immunol 3:4 [CrossRef]
    [Google Scholar]
  15. Leon R. P., Hedlund T., Meech S. J., Li S., Schaack J., Hunger S. P., Duke R. C., DeGregori J. 1998; Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci U S A 95:13159–13164 [CrossRef]
    [Google Scholar]
  16. Mathias P., Wickham T., Moore M., Nemerow G. 1994; Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 68:6811–6814
    [Google Scholar]
  17. McDonald D., Stockwin L., Matzow T., Blair Zajdel M. E., Blair G. E. 1999; Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Ther 6:1512–1519 [CrossRef]
    [Google Scholar]
  18. Prince H. M., Dessureault S., Gallinger S., Krajden M., Sutherland D. R., Addison C., Zhang Y., Graham F. L., Stewart A. K. 1998; Efficient adenovirus-mediated gene expression in malignant human plasma cells: relative lymphoid cell resistance. Exp Hematol 26:27–36
    [Google Scholar]
  19. Rowe M., Jones M. 2001; Detection of EBV latent proteins by Western Blotting. In Methods in Molecular Biology vol 174 Epstein-Barr, Virus Protocols pp. 229–242 Edited by Wilson J. B. Totowa: Humana Press;
    [Google Scholar]
  20. Rowe M., Lear A. L., Croom-Carter D., Davies A. H., Rickinson A. B. 1992; Three pathways of Epstein–Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66:122–131
    [Google Scholar]
  21. Rowe M., Khanna R., Jacob C. A., Argaet V., Kelly A., Powis S., Belich M., Croom-Carter D., Lee S., Burrows S. R. 10 other authors 1995; Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein–Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25:1374–1384 [CrossRef]
    [Google Scholar]
  22. Sample J., Kieff E. 1990; Transcription of the Epstein–Barr virus genome during latency in growth-transformed lymphocytes. J Virol 64:1667–1674
    [Google Scholar]
  23. Segerman A., Mei Y.-F., Wadell G. 2000; Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol 74:1457–1467 [CrossRef]
    [Google Scholar]
  24. Silver L., Anderson C. W. 1988; Interaction of human adenovirus serotype 2 with human lymphoid cells. Virology 165:377–387 [CrossRef]
    [Google Scholar]
  25. Spiller O. B., Goodfellow I. G., Evans D. J., Hinchliffe S. J., Morgan B. P. 2002; Coxsackie B viruses that use human DAF as a receptor infect pig cells via pig CAR and do not use pig DAF. J Gen Virol 83:45–52
    [Google Scholar]
  26. Stevenson S. C., Rollence M., White B., Weaver L., McClelland A. 1995; Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J Virol 69:2850–2857
    [Google Scholar]
  27. Stockwin L. H., Matzow T., Georgopoulos N. T., Stanbridge L. J., Jones S. V., Martin I. G., Blair-Zajdel M. E., Blair G. E. 2002; Engineered expression of the Coxsackie B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. J Immunol Methods 259:205–215 [CrossRef]
    [Google Scholar]
  28. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. J Virol 63:445–449
    [Google Scholar]
  29. Takayama K., Ueno H., Pei X. H., Nakanishi Y., Yatsunami J., Hara N. 1998; The levels of integrin α v β 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells. Gene Ther 5:361–368 [CrossRef]
    [Google Scholar]
  30. van Raaij M. J., Chouin E., van der Zandt H., Bergelson J. M., Cusack S. 2000; Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1·7 Å resolution. Structure Fold Des 8:1147–1155 [CrossRef]
    [Google Scholar]
  31. von Seggern D. J., Huang S., Fleck S. K., Stevenson S. C., Nemerow G. R. 2000; Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein–Barr virus-transformed B cells. J Virol 74:354–362 [CrossRef]
    [Google Scholar]
  32. Wang X., Bergelson J. M. 1999; Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol 73:2559–2562
    [Google Scholar]
  33. White R. E., Wade-Martins R., James M. R. 2002; Infectious delivery of 120-kilobase genomic DNA by an Epstein–Barr virus amplicon vector. Mol Ther 5:427–435 [CrossRef]
    [Google Scholar]
  34. Wickham T. J. 2003; Ligand-directed targeting of genes to the site of disease. Nat Med 9:135–139 [CrossRef]
    [Google Scholar]
  35. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins α v β 3 and α v β 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319 [CrossRef]
    [Google Scholar]
  36. Wilkinson G. W., Akrigg A. 1992; Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res 20:2233–2239 [CrossRef]
    [Google Scholar]
  37. Yanagawa B., Spiller O. B., Proctor D. G., Choy J., Luo H., Zhang H. M., Suarez A., Yang D., McManus B. M. 2004; Soluble recombinant coxsackievirus and adenovirus receptor abrogates coxsackievirus B3-mediated pancreatitis and myocarditis in mice. J Infect Dis 189:1431–1439 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80806-0
Loading
/content/journal/jgv/10.1099/vir.0.80806-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error