1887

Abstract

The hypothesis was tested that mucosal stimulation with unmatched mononuclear cells would induce systemic alloimmune responses. Rectal or vaginal mucosal administration of 10–10 unmatched mononuclear cells induced significant dose-dependent T-cell proliferation stimulated by the allogeneic cells in rhesus macaques. This was associated with a significant upregulation of CD8 T-cell-derived suppressor factor, as well as the CC chemokines CCL3, CCL4 and CCL5. In addition, there was a dose-dependent increase in antibodies to CCR5. These responses were associated with decreased simian immunodeficiency virus (SIV) infectivity of CD4 T cells. A further investigation of SIV infectivity of CD4 T cells separated from multiparous macaques also showed significant inhibition compared with male macaques. It is suggested that vaginal or rectal exposure to allogeneic stimulation by a partner's HLA antigens in seminal fluid, as occurs during sexual intercourse, or immunization by semi-allogeneic fetuses in multiparous females may elicit protection against SIV or human immunodeficiency virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80802-0
2005-08-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862231.html?itemId=/content/journal/jgv/10.1099/vir.0.80802-0&mimeType=html&fmt=ahah

References

  1. Amara, A., Gall, S. L., Schwartz, O., Salamero, J., Montes, M., Loetscher, P., Baggiolini, M., Virelizier, J. L. & Arenzana-Seisdedos, F. ( 1997; ). HIV coreceptor downregulation as antiviral principle; SDF-1α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 186, 139–146.[CrossRef]
    [Google Scholar]
  2. Bergmeier, L. A., Walker, J., Tao, L., Cranage, M. P. & Lehner, T. ( 1994; ). Antibodies to human and non-human primate cellular and culture medium components in macaques vaccinated with simian immunodeficiency virus. Immunology 83, 213–220.
    [Google Scholar]
  3. Beyrer, C., Artenstein, A. W., Rugpao, S. & 9 other authors ( 1999; ). Epidemiologic and biologic characterization of a cohort of human immunoficiency virus type 1 highly exposed, persistently seronegative female sex workers in northern Thailand. Chiang Mai HEPS Working Group. J Infect Dis 179, 59–67.[CrossRef]
    [Google Scholar]
  4. Blattman, J. N., Antia, R., Sourdive, D. J. D., Wang, X., Kaech, S. M., Murali-Krishna, K., Altman, J. D. & Ahmed, R. ( 2002; ). Estimating the precursor frequency of naïve antigen-specific CD8 T cells. J Exp Med 195, 657–664.[CrossRef]
    [Google Scholar]
  5. Bouhlal, H., Hocini, H., Quillent-Gregoire, C. & 8 other authors ( 2001; ). Antibodies to C-C chemokine receptor 5 in normal human IgG block infection of macrophages and lymphocytes with primary R5-tropic strains of HIV-1. J Immunol 166, 7606–7611.[CrossRef]
    [Google Scholar]
  6. Bruhl, P., Kerschbaum, A., Zimmermann, K., Eibl, M. M. & Mannhalter, J. W. ( 1996; ). Allostimulated lymphocytes inhibit replication of HIV type 1. AIDS Res Hum Retroviruses 12, 31–37.[CrossRef]
    [Google Scholar]
  7. Carlson, J. R., McGraw, T. P., Keddie, E. & 8 other authors ( 1990; ). Vaccine protection of rhesus macaques against simian immunodeficiency virus infection. AIDS Res Hum Retroviruses 6, 1239–1246.
    [Google Scholar]
  8. Celum, C. L., Coombs, R. W., Jones, M. & 7 other authors ( 1994; ). Risk factors for repeatedly reactive HLA-1 EIA and intermediate western blot. A population-based case–control study. Arch Intern Med 154, 1129–1137.[CrossRef]
    [Google Scholar]
  9. Clerici, M., Shearer, G., Hounsell, E. F., Jameson, B., Habeshaw, J. & Dalgleish, A. G. ( 1993; ). Alloactivated cytotoxic T cells recognize the carboxy-terminal domain of human immunodeficiency virus-1 gp120 envelope glycoprotein. Eur J Immunol 23, 2022–2025.[CrossRef]
    [Google Scholar]
  10. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Ayra, S. K., Gallo, R. C. & Lusso, P. ( 1995; ). Identification of RANTES, MIP-1α and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.[CrossRef]
    [Google Scholar]
  11. Desrosiers, R. C., Wyand, M. S., Kodama, T., Ringler, D. J., Arthur, L. O., Sehgal, P. K., Letvin, N. L., King, N. W. & Daniel, M. D. ( 1989; ). Vaccine protection against simian immunodeficiency virus infection. Proc Natl Acad Sci U S A 86, 6353–6357.[CrossRef]
    [Google Scholar]
  12. Doyle, C. B., Bhattacharyya, U., Kent, K. A., Stott, E. J. & Jones, I. M. ( 1995; ). Regions required for CD4 binding in the external glycoprotein gp120 of simian immunodeficiency virus. J Virol 69, 1256–1260.
    [Google Scholar]
  13. Garzino-Demo, A., Moss, R. B., Margolick, J. B. & 7 other authors ( 1999; ). Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status. Proc Natl Acad Sci U S A 96, 11986–11991.[CrossRef]
    [Google Scholar]
  14. Goh, W. C., Markee, J., Akridge, R. E. & 8 other authors ( 1999; ). Protection against human immunodeficiency virus type 1 infection in persons with repeated exposure: evidence for T cell immunity in the absence of inherited CCR5 coreceptor defects. J Infect Dis 179, 548–557.[CrossRef]
    [Google Scholar]
  15. Kaul, R., Plummer, F. A., Kimani, J. & 8 other authors ( 2000; ). HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J Immunol 164, 1602–1611.[CrossRef]
    [Google Scholar]
  16. Kind, C. ( 1995; ). Mother-to-child transmission of human immunodeficiency virus type 1: influence of parity and mode of delivery. Paediatric AIDS Group of Switzerland. Eur J Pediatr 154, 542–545.[CrossRef]
    [Google Scholar]
  17. Koelman, C. A., Coumans, A. B. C., Nijman, H. W., Doxiadis, I. I. N., Dekker, G. A. & Claas, F. H. J. ( 2000; ). Correlation between oral sex and a low incidence of preeclampsia: a role for soluble HLA in seminal fluid? J Reprod Immunol 46, 155–166.[CrossRef]
    [Google Scholar]
  18. Langlois, A. J., Weinhold, K. J., Matthews, T. J., Greenberg, M. L. & Bolognesi, D. P. ( 1992; ). The ability of certain SIV vaccines to provoke reactions against normal cells. Science 255, 292–293.[CrossRef]
    [Google Scholar]
  19. Lehner, T., Wang, Y., Cranage, M. & 11 other authors ( 1996; ). Protective mucosal immunity elicited by targeted iliac lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Nat Med 2, 767–775.[CrossRef]
    [Google Scholar]
  20. Lehner, T., Wang, Y., Doyle, C., Tao, L., Bergmeier, L. A., Mitchell, E., Bogers, W. M. J. M., Heeney, J. & Kelly, C. G. ( 1999; ). Induction of inhibitory antibodies to CCR5 chemokine receptor and their complementary role in preventing SIV infection in macaques. Eur J Immunol 29, 2427–2435.[CrossRef]
    [Google Scholar]
  21. Lehner, T., Shearer, G. M., Hackett, C. J., Schultz, A. & Sharma, O. K. ( 2000a; ). Alloimmunization as a strategy for vaccine design against HIV/AIDS. AIDS Res Hum Retroviruses 16, 309–313.[CrossRef]
    [Google Scholar]
  22. Lehner, T., Bergmeier, L. A., Wang, Y., Tao, L., Singh, M., Spallek, R. & van der Zee, R. ( 2000b; ). Heat shock proteins generate β-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 30, 594–603.[CrossRef]
    [Google Scholar]
  23. Lehner, T., Doyle, C., Wang, Y., Babaahmady, K., Whittall, T., Tao, L., Bergmeier, L. A. & Kelly, C. ( 2001; ). Immunogenicity of the extracellular domains of C-C chemokine receptor 5 and the effects on simian immunodeficiency virus or HIV infectivity. J Immunol 166, 7446–7455.[CrossRef]
    [Google Scholar]
  24. Levy, J. A., Mackewicz, C. E. & Barker, E. ( 1996; ). Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol Today 17, 217–224.[CrossRef]
    [Google Scholar]
  25. MacDonald, K. S., Embree, J., Njenga, S. & 7 other authors ( 1998; ). Mother–child class I HLA concordance increases perinatal human immunodeficiency virus type 1 transmission. J Infect Dis 177, 551–556.[CrossRef]
    [Google Scholar]
  26. Mack, M., Luckow, B., Nelson, P. J. & 10 other authors ( 1998; ). Aminooxypentase-RANTES induced CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187, 1215–1224.[CrossRef]
    [Google Scholar]
  27. Mackewicz, C. & Levy, J. A. ( 1992; ). CD8+ cell anti-HIV activity: nonlytic suppression virus of replication. AIDS Res Hum Retroviruses 8, 1039–1050.[CrossRef]
    [Google Scholar]
  28. Mackewicz, C. E., Craik, C. S. & Levy, J. A. ( 2003; ). The CD8+ cell noncytotoxic anti-HIV response can be blocked by protease inhibitors. Proc Natl Acad Sci U S A 100, 3433–3438.[CrossRef]
    [Google Scholar]
  29. Martin-Villa, J. M., Longas, J. & Arnaiz-Villena, A. ( 1999; ). Cyclic expression of HLA class I and II molecules on the surface of purified human spermatozoa and their control by serum inhibin B levels. Biol Reprod 61, 1381–1386.[CrossRef]
    [Google Scholar]
  30. Mazzoli, S., Trabattoni, D., Lo Caputo, S. & 13 other authors ( 1997; ). HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nat Med 3, 1250–1257.[CrossRef]
    [Google Scholar]
  31. Murphey-Corb, M., Martin, L. N., Davidson-Fairburn, B. & 9 other authors ( 1989; ). A formalin inactivated whole SIV vaccine confers protection in macaques. Science 246, 1293–1297.[CrossRef]
    [Google Scholar]
  32. Otting, N., Heijmans, C. M., Noort, R. C., de Groot, N. G., Doxiadis, G. G., van Rood, J. J., Watkins, D. I. & Bontrop, R. E. ( 2005; ). Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A 102, 1626–1631.[CrossRef]
    [Google Scholar]
  33. Peters, B., Whittall, T., Babaahmady, K., Gray, K., Vaughan, R. & Lehner, T. ( 2004; ). Effect of heterosexual intercourse in mucosal alloimmunisation and resistance to HIV-1 infection. Lancet 363, 518–524.[CrossRef]
    [Google Scholar]
  34. Pinto, L. A., Sullivan, J., Berzofsky, J. A., Clerici, M., Kessler, H. A., Landay, A. L. & Shearer, G. M. ( 1995; ). ENV-specific cytotoxic T lymphocyte responses in HIV seronegative health care workers occupationally exposed to HIV-contaminated body fluids. J Clin Invest 96, 867–876.[CrossRef]
    [Google Scholar]
  35. Polyanskaya, N., Sharpe, S. A., Cook, N., Leech, S. & Cranage, M. P. ( 2003; ). Infection of macaques with simian immunodeficiency virus induces a species-specific antibody response to major histocompatibility complex class I and II molecules. J Gen Virol 84, 1671–1676.[CrossRef]
    [Google Scholar]
  36. Quayle, A. J., Xu, C., Mayer, K. H. & Anderson, D. J. ( 1997; ). T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J Infect Dis 176, 960–968.[CrossRef]
    [Google Scholar]
  37. Rugeles, M. T., Trubey, C. M., Bedoya, V. I., Pinto, L. A., Oppenheim, J. J., Rybak, S. M. & Shearer, G. M. ( 2003; ). Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17, 481–486.[CrossRef]
    [Google Scholar]
  38. Shearer, G. M., Clerici, M. & Dalgleish, A. ( 1993; ). Alloimmunization as an AIDS vaccine? Science 262, 161–162.[CrossRef]
    [Google Scholar]
  39. Stott, E. J., Chan, W. L., Mills, K. H., Page, M., Taffs, F., Cranage, M., Greenaway, P. & Kitchin, P. ( 1990; ). Preliminary report: protection of cynomolgus macaques against simian immunodeficiency virus by fixed infected-cell vaccine. Lancet 336, 1538–1541.[CrossRef]
    [Google Scholar]
  40. Stott, E. J., Almond, N., West, W., Kent, K., Cranage, M. & Rud, E. ( 1994; ). Protection against simian immunodeficiency virus infection of macaques by cellular or viral antigens. In Neuvieme Colloque Des Cent Gardes, pp. 219–224. Edited by M. Girard & L. Vallette. Lyon, France: Fondation Marcel Merieux.
  41. Suchin, E. J., Langmuir, P. B., Palmer, E., Sayegh, M. H., Wells, A. D. & Turka, L. A. ( 2001; ). Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 166, 973–981.[CrossRef]
    [Google Scholar]
  42. Vila-Coro, A. J., Mellado, M., Martin de Ana, A., Lucas, P., del Real, G., Martinez-A., C. & Rodriguez-Frade, J. M. ( 2000; ). HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci U S A 97, 3388–3393.[CrossRef]
    [Google Scholar]
  43. Wang, Y., Tao, L., Mitchell, E. & 7 other authors ( 1998; ). Generation of CD8 suppressor factor and β-chemokines, induced by xenogeneic immunization, in the prevention of SIV infection in macaques. Proc Natl Acad Sci U S A 95, 5223–5228.[CrossRef]
    [Google Scholar]
  44. Wang, Y., Tao, L., Mitchell, E., Bravery, C., Berlingieri, P., Armstrong, P., Vaughan, R., Underwood, J. & Lehner, T. ( 1999a; ). Allo-immunization elicits CD8+ T cell-derived chemokines, HIV suppressor factors and resistance to HIV infection in women. Nat Med 5, 1004–1009.[CrossRef]
    [Google Scholar]
  45. Wang, Y., Tao, L., Mitchell, E., Bergmeier, L., Doyle, C. & Lehner, T. ( 1999b; ). The effect of immunization on chemokines and CCR5 and CXCR4 coreceptor functions in SIV binding and chemotaxis. Vaccine 17, 1826–1836.[CrossRef]
    [Google Scholar]
  46. Wang, Y., Underwood, J., Vaughan, R., Harmer, A., Doyle, C. & Lehner, T. ( 2002; ). Allo-immunization elicits CCR5 antibodies, SDF-1 chemokines, and CD8-suppressor factors that inhibit transmission of R5 and X4 HIV-1 in women. Clin Exp Immunol 129, 493–501.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80802-0
Loading
/content/journal/jgv/10.1099/vir.0.80802-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error