1887

Abstract

The three plus-strand genomic RNAs of (AMV) and the subgenomic messenger for viral coat protein (CP) contain a 5′-cap structure, but no 3′-poly(A) tail. Binding of CP to the 3′ end of AMV RNAs is required for efficient translation of the viral RNAs and to initiate infection in plant cells. To study the role of CP in translation, plant protoplasts were transfected with luciferase (Luc) transcripts with 3′-terminal sequences consisting of the 3′ untranslated region of AMV RNA 3 (Luc–AMV), a poly(A) tail of 50 residues [Luc–poly(A)] or a short vector-derived sequence (Luc–control). Pre-incubation of the transcripts with CP had no effect on Luc expression from Luc–poly(A) or Luc–control, but strongly stimulated Luc expression from Luc–AMV. From time-course experiments, it was calculated that CP binding increased the half-life of Luc–AMV by 20 % and enhanced its translational efficiency by about 40-fold. In addition to the 3′ AMV sequence, the cap structure was required for CP-mediated stimulation of Luc–AMV translation. Glutathione -transferase pull-down assays revealed an interaction between AMV CP and initiation factor complexes eIF4F and eIFiso4F from wheatgerm. Far-Western blotting revealed that this binding occurred through an interaction of CP with the eIF4G and eIFiso4G subunits of eIF4F and eIFiso4F, respectively. The results support the hypothesis that the role of CP in translation of viral RNAs mimics the role of the poly(A)-binding protein in translation of cellular mRNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80796-0
2005-06-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861841.html?itemId=/content/journal/jgv/10.1099/vir.0.80796-0&mimeType=html&fmt=ahah

References

  1. Bol, J. F. ( 1999; ). Alfalfa mosaic virus and ilarviruses: involvement of coat protein in multiple steps of the replication cycle. J Gen Virol 80, 1089–1102.
    [Google Scholar]
  2. Bol, J. F. ( 2003; ). Alfalfa mosaic virus: coat protein-dependent initiation of infection. Mol Plant Pathol 4, 1–8.[CrossRef]
    [Google Scholar]
  3. Bol, J. F., van Vloten-Doting, L. & Jaspars, E. M. J. ( 1971; ). A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology 46, 73–85.[CrossRef]
    [Google Scholar]
  4. Browning, K. S. ( 1996; ). The plant translational apparatus. Plant Mol Biol 32, 107–144.[CrossRef]
    [Google Scholar]
  5. Browning, K. S., Humphreys, J., Hobbs, W., Smith, G. B. & Ravel, J. M. ( 1990; ). Determination of the amounts of the protein synthesis initiation and elongation factors in wheat germ. J Biol Chem 265, 17967–17973.
    [Google Scholar]
  6. Browning, K. S., Webster, C., Roberts, J. K. M. & Ravel, J. M. ( 1992; ). Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J Biol Chem 267, 10096–10100.
    [Google Scholar]
  7. Deo, R. C., Groft, C. M., Rajashankar, K. R. & Burley, S. K. ( 2002; ). Recognition of the rotavirus mRNA 3′ consensus by an asymmetric NSP3 homodimer. Cell 108, 71–81.[CrossRef]
    [Google Scholar]
  8. Fraser, C. S., Pain, V. M. & Morley, S. J. ( 1999; ). The association of initiation factor 4F with poly(A)-binding protein is enhanced in serum-stimulated Xenopus kidney cells. J Biol Chem 274, 196–204.[CrossRef]
    [Google Scholar]
  9. Gallie, D. R. ( 1991; ). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5, 2108–2116.[CrossRef]
    [Google Scholar]
  10. Gallie, D. R. ( 2002; ). Protein-protein interactions required during translation. Plant Mol Biol 50, 949–970.[CrossRef]
    [Google Scholar]
  11. Gallie, D. R. & Kobayashi, M. ( 1994; ). The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142, 159–165.[CrossRef]
    [Google Scholar]
  12. Gallie, D. R. & Browning, K. S. ( 2001; ). eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem 276, 36951–36960.[CrossRef]
    [Google Scholar]
  13. Gallie, D. R., Lucas, W. J. & Walbot, V. ( 1989; ). Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1, 301–311.[CrossRef]
    [Google Scholar]
  14. Gallie, D. R., Caldwell, C. & Pitto, L. ( 1995; ). Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol 108, 1703–1713.
    [Google Scholar]
  15. Gallie, D. R., Lewis, N. J. & Marzluff, W. F. ( 1996; ). The histone 3′-terminal stem-loop is necessary for translation in Chinese hamster ovary cells. Nucleic Acids Res 24, 1954–1962.[CrossRef]
    [Google Scholar]
  16. Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X. & Browning, K. S. ( 1997; ). The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J Biol Chem 272, 1046–1053.[CrossRef]
    [Google Scholar]
  17. Gallie, D. R., Le, H., Tanguay, R. L. & Browning, K. S. ( 1998; ). Translation initiation factors are differentially regulated in cereals during development and following heat shock. Plant J 14, 715–722.[CrossRef]
    [Google Scholar]
  18. Gazo, B. G., Murphy, P., Gatchel, J. R. & Browning, K. S. ( 2004; ). A novel interaction of cap-binding protein complexes eukaryotic initiation factor (eIF) 4F and eIF(iso)4F with a region in the 3′-untranslated region of satellite tobacco necrosis virus. J Biol Chem 279, 13584–13592.[CrossRef]
    [Google Scholar]
  19. Guo, L., Allen, E. M. & Miller, W. A. ( 2001; ). Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7, 1103–1109.[CrossRef]
    [Google Scholar]
  20. Hooft van Huijsduijnen, R. A. M., Alblas, S. W., de Rijk, R. H. & Bol, J. F. ( 1986; ). Induction by salicylic acid of pathogenesis-related proteins and resistance to alfalfa mosaic virus infection in various plant species. J Gen Virol 67, 2135–2143.[CrossRef]
    [Google Scholar]
  21. Houwing, C. J. & Jaspars, E. M. J. ( 1986; ). Coat protein blocks the in vitro transcription of the virion RNAs of alfalfa mosaic virus. FEBS Lett 209, 284–288.[CrossRef]
    [Google Scholar]
  22. Imataka, H., Gradi, A. & Sonenberg, N. ( 1998; ). A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17, 7480–7489.[CrossRef]
    [Google Scholar]
  23. Jaspars, E. M. J. ( 1985; ). Interaction of alfalfa mosaic virus nucleic acid and protein. In Molecular Plant Virology, vol. 1, pp. 155–225. Edited by J. W. Davies. Boca Raton, FL: CRC Press.
  24. Jaspars, E. M. J. ( 1999; ). Genome activation in alfamo- and ilarviruses. Arch Virol 144, 843–863.[CrossRef]
    [Google Scholar]
  25. Jobling, S. A. & Gehrke, L. ( 1987; ). Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325, 622–625.[CrossRef]
    [Google Scholar]
  26. Lax, S., Fritz, W., Browning, K. & Ravel, J. ( 1985; ). Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5′-triphosphate inhibition of polypeptide synthesis. Proc Natl Acad Sci U S A 82, 330–333.[CrossRef]
    [Google Scholar]
  27. Le, H., Tanguay, R. L., Balasta, M. L., Wei, C.-C., Browning, K. S., Metz, A. M., Goss, D. J. & Gallie, D. R. ( 1997; ). Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272, 16247–16255.[CrossRef]
    [Google Scholar]
  28. Le, H., Browning, K. S. & Gallie, D. R. ( 1998; ). The phosphorylation state of the wheat translation initiation factors eIF4B, eIF4A, and eIF2 is differentially regulated during seed development and germination. J Biol Chem 273, 20084–20089.[CrossRef]
    [Google Scholar]
  29. Ling, J., Morley, S. J., Pain, V. M., Marzluff, W. F. & Gallie, D. R. ( 2002; ). The histone 3′-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3. Mol Cell Biol 22, 7853–7867.[CrossRef]
    [Google Scholar]
  30. Matsuda, D. & Dreher, T. W. ( 2004; ). The tRNA-like structure of turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321, 36–46.[CrossRef]
    [Google Scholar]
  31. Matsuda, D., Yoshinari, S. & Dreher, T. W. ( 2004; ). eEF1A binding to aminoacylated viral RNA represses minus strand synthesis by TYMV RNA-dependent RNA polymerase. Virology 321, 47–56.[CrossRef]
    [Google Scholar]
  32. Neeleman, L., van der Kuyl, A. C. & Bol, J. F. ( 1991; ). Role of alfalfa mosaic virus coat protein gene in symptom formation. Virology 181, 687–693.[CrossRef]
    [Google Scholar]
  33. Neeleman, L., van der Vossen, E. A. G. & Bol, J. F. ( 1993; ). Infection of tobacco with alfalfa mosaic virus cDNAs sheds light on the early function of the coat protein. Virology 196, 883–887.[CrossRef]
    [Google Scholar]
  34. Neeleman, L., Olsthoorn, R. C. L., Linthorst, H. J. M. & Bol, J. F. ( 2001; ). Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA. Proc Natl Acad Sci U S A 98, 14286–14291.[CrossRef]
    [Google Scholar]
  35. Neeleman, L., Linthorst, H. J. M. & Bol, J. F. ( 2004; ). Efficient translation of alfamovirus RNAs requires the binding of coat protein dimers to the 3′ termini of the viral RNAs. J Gen Virol 85, 231–240.[CrossRef]
    [Google Scholar]
  36. Olsthoorn, R. C. L., Mertens, S., Brederode, F. T. & Bol, J. F. ( 1999; ). A conformational switch at the 3′ end of a plant virus RNA regulates viral replication. EMBO J 18, 4856–4864.[CrossRef]
    [Google Scholar]
  37. Olsthoorn, R. C. L., Haasnoot, P. C. J. & Bol, J. F. ( 2004; ). Similarities and differences between the subgenomic and minus-strand promoters of an RNA plant virus. J Virol 78, 4048–4053.[CrossRef]
    [Google Scholar]
  38. Piron, M., Vende, P., Cohen, J. & Poncet, D. ( 1998; ). Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17, 5811–5821.[CrossRef]
    [Google Scholar]
  39. Pokrovskaya, I. D. & Gurevich, V. V. ( 1994; ). In vitro transcription: preparative RNA yields in analytical scale reactions. Anal Biochem 220, 420–423.[CrossRef]
    [Google Scholar]
  40. Preiss, T. & Hentze, M. W. ( 1998; ). Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520.[CrossRef]
    [Google Scholar]
  41. Reusken, C. B. E. M., Neeleman, L. & Bol, J. F. ( 1994; ). The 3′-untranslated region of alfalfa mosaic virus RNA 3 contains at least two independent binding sites for viral coat protein. Nucleic Acids Res 22, 1346–1353.[CrossRef]
    [Google Scholar]
  42. Svitkin, Y. V., Imataka, H., Khaleghpour, K., Kahvejian, A., Liebig, H.-D. & Sonenberg, N. ( 2001; ). Poly(A)-binding protein interaction with eIF4G stimulates picornavirus IRES-dependent translation. RNA 7, 1743–1752.
    [Google Scholar]
  43. Tarun, S. Z., Jr & Sachs, A. B. ( 1996; ). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15, 7168–7177.
    [Google Scholar]
  44. van Heerden, A. & Browning, K. S. ( 1994; ). Expression in Escherichia coli of the two subunits of the isozyme form of wheat germ protein synthesis initiation factor 4F. Purification of the subunits and formation of an enzymatically active complex. J Biol Chem 269, 17454–17457.
    [Google Scholar]
  45. Vende, P., Piron, M., Castagné, N. & Poncet, D. ( 2000; ). Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74, 7064–7071.[CrossRef]
    [Google Scholar]
  46. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. ( 1998; ). Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2, 135–140.[CrossRef]
    [Google Scholar]
  47. Zeenko, V. V., Ryabova, L. A., Spirin, A. S., Rothnie, H. M., Hess, D., Browning, K. S. & Hohn, T. ( 2002; ). Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3′ untranslated region of tobacco mosaic virus RNA. J Virol 76, 5678–5691.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80796-0
Loading
/content/journal/jgv/10.1099/vir.0.80796-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error