1887

Abstract

Multiply primed rolling-circle amplification is a novel technology that uses bacteriophage phi29 DNA polymerase to amplify circular DNA molecules, without the need for prior knowledge of their sequences. In an attempt to detect (TTV), rolling-circle amplification was used to amplify DNA extracted from eight human and four pig serum samples. All samples gave high molecular weight (>30 kb) amplification products. By restriction endonuclease digestion, these products generated DNA fragments whose sizes were consistent with those of human TTV (3·8 kb) and swine TTV (Sd-TTV; 2·9 kb) genomes. Two TTV isolates derived from a single AIDS patient, as well as two Sd-TTV isolates derived from a single pig, were characterized by complete nucleotide sequencing. One of the Sd-TTV isolates showed very low (43–45 %) nucleotide sequence similarity to the other Sd-TTV isolate and to the prototype isolate Sd-TTV31, and could be considered the prototype of a novel genogroup.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80794-0
2005-05-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861343.html?itemId=/content/journal/jgv/10.1099/vir.0.80794-0&mimeType=html&fmt=ahah

References

  1. Biagini P., Todd D., Bendinelli M. 8 other authors 2005; Anellovirus. In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp  335–341 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Academic Press;
    [Google Scholar]
  2. Christensen J. K., Eugen-Olsen J., Sorensen M., Ullum H., Gjedde S. B., Pedersen B. K., Nielsen J. O., Krogsgaard K. 2000; Prevalence and prognostic significance of infection with TT virus in patients infected with human immunodeficiency virus. J Infect Dis 181:1796–1799 [CrossRef]
    [Google Scholar]
  3. Dean F. B., Nelson J. R., Giesler T. L., Lasken R. S. 2001; Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099 [CrossRef]
    [Google Scholar]
  4. Devalle S., Niel C. 2004; Distribution of TT virus genomic groups 1–5 in Brazilian blood donors, HBV carriers, and HIV-1-infected patients. J Med Virol 72:166–173 [CrossRef]
    [Google Scholar]
  5. Esteban J. A., Salas M., Blanco L. 1993; Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268:2719–2726
    [Google Scholar]
  6. Garmendia C., Bernad A., Esteban J. A., Blanco L., Salas M. 1992; The bacteriophage phi 29 DNA polymerase, a proofreading enzyme. J Biol Chem 267:2594–2599
    [Google Scholar]
  7. Inoue-Nagata A. K., Albuquerque L. C., Rocha W. B., Nagata T. 2004; A simple method for cloning the complete begomovirus genome using the bacteriophage π 29 DNA polymerase. J Virol Methods 116:209–211 [CrossRef]
    [Google Scholar]
  8. Jelcic I., Hotz-Wagenblatt A., Hunziker A., zur Hausen H., de Villiers E. M. 2004; Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78:7498–7507 [CrossRef]
    [Google Scholar]
  9. Leary T. P., Erker J. C., Chalmers M. L., Desai S. M., Mushahwar I. K. 1999; Improved detection systems for TT virus reveal high prevalence in humans, non-human primates and farm animals. J Gen Virol 80:2115–2120
    [Google Scholar]
  10. Manni F., Rotola A., Caselli E., Bertorelle G., Luca D. D. 2002; Detecting recombination in TT virus: a phylogenetic approach. J Mol Evol 55:563–572 [CrossRef]
    [Google Scholar]
  11. McKeown N. E., Fenaux M., Halbur P. G., Meng X. J. 2004; Molecular characterization of porcine TT virus, an orphan virus, in pigs from six different countries. Vet Microbiol 104:113–117 [CrossRef]
    [Google Scholar]
  12. Miyata H., Tsunoda H., Kazi A., Yamada A., Khan M. A., Murakami J., Kamahora T., Shiraki K., Hino S. 1999; Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol 73:3582–3586
    [Google Scholar]
  13. Mushahwar I. K., Erker J. C., Muerhoff A. S., Leary T. P., Simons J. N., Birkenmeyer L. G., Chalmers M. L., Pilot-Matias T. J., Dexai S. M. 1999; Molecular and biophysical characterization of TT virus: evidence for a new virus family infecting humans. Proc Natl Acad Sci U S A 96:3177–3182 [CrossRef]
    [Google Scholar]
  14. Niel C., Moraes M. T., Gaspar A. M., Yoshida C. F., Gomes S. A. 1994; Genetic diversity of hepatitis B virus strains isolated in Rio de Janeiro. Brazil. J Med Virol 44:180–186 [CrossRef]
    [Google Scholar]
  15. Niel C., de Oliveira J. M., Ross R. S., Gomes S. A., Roggendorf M., Viazov S. 1999; High prevalence of TT virus infection in Brazilian blood donors. J Med Virol 57:259–263 [CrossRef]
    [Google Scholar]
  16. Niel C., Saback F. L., Lampe E. 2000; Coinfection with multiple TT virus strains belonging to different genotypes is a common event in healthy Brazilian adults. J Clin Microbiol 38:1926–1930
    [Google Scholar]
  17. Nishizawa T., Okamoto H., Konishi K., Yoshizawa H., Miyakawa Y., Mayumi M. 1997; A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 241:92–97 [CrossRef]
    [Google Scholar]
  18. Okamoto H., Nishizawa T., Tawara A., Peng Y., Kishimoto J., Wang Y. 2001; Genomic and evolutionary characterization of TT virus (TTV) in tupaias and comparison with species-specific TTVs in humans and non-human primates. J Gen Virol 82:2041–2050
    [Google Scholar]
  19. Okamoto H., Takahashi M., Nishizawa T., Tawara A., Fukai K., Muramatsu U., Naito Y., Yoshikawa A. 2002; Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J Gen Virol 83:1291–1297
    [Google Scholar]
  20. Peng Y. H., Nishizawa T., Takahashi M., Ishikawa T., Yoshikawa A., Okamoto H. 2002; Analysis of the entire genomes of thirteen TT virus variants classifiable into the fourth and fifth genetic groups, isolated from viremic infants. Arch Virol 147:21–41 [CrossRef]
    [Google Scholar]
  21. Prescott L. E., Simmonds P. 1998; Global distribution of transfusion-transmitted virus. N Engl J Med 339:776–777 [CrossRef]
    [Google Scholar]
  22. Rector A., Tachezy R., van Ranst M. 2004; A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J Virol 78:4993–4998 [CrossRef]
    [Google Scholar]
  23. Shibayama T., Masuda G., Ajisawa A., Takahashi M., Nishizawa T., Tsuda F., Okamoto H. 2001; Inverse relationship between the titre of TT virus DNA and the CD4 cell count in patients infected with HIV. AIDS 15:563–570 [CrossRef]
    [Google Scholar]
  24. Takahashi K., Hoshino H., Ohta Y., Yoshida N., Mishiro S. 1998; Very high prevalence of TT virus (TTV) infection in general population of Japan revealed by a new set of PCR primers. Hepatol Res 12:233–239 [CrossRef]
    [Google Scholar]
  25. Takayama S., Yamazaki S., Matsuo S., Sugii S. 1999; Multiple infection of TT virus (TTV) with different genotypes in Japanese hemophiliacs. Biochem Biophys Res Commun 256:208–211 [CrossRef]
    [Google Scholar]
  26. Verschoor E. J., Langenhuijzen S., Heeney J. L. 1999; TT viruses (TTV) of non-human primates and their relationship to the human TTV genotypes. J Gen Virol 80:2491–2499
    [Google Scholar]
  27. Worobey M. 2000; Extensive homologous recombination among widely divergent TT viruses. J Virol 74:7666–7670 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80794-0
Loading
/content/journal/jgv/10.1099/vir.0.80794-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error