1887

Abstract

Measles virus (MV) nucleoprotein (N) is a cytosolic protein that is released into the extracellular compartment after apoptosis and/or secondary necrosis of MV-infected cells . Thus, MV-N becomes accessible to inhibitory cell-surface receptors: FcRIIB and an uncharacterized nucleoprotein receptor (NR). MV-N is composed of two domains: N (aa 1–400) and N (aa 401–525). To assess the contribution of MV-N domains and of these two receptors in suppression of cell proliferation, a human melanoma HT144 cell line expressing (HT144IIB1) or lacking FcRIIB1 was used as a model. Specific and exclusive N–FcRIIB1 and N–NR interactions were shown. Moreover, N binding to human NR predominantly led to suppression of cell proliferation by arresting cells in the G/G phases of the cell cycle, rather than to apoptosis. N binding to HT144IIB1 cells primarily triggered caspase-3 activation, in contrast to HT144IIB1/IC cells lacking the FcRIIB1 intra-cytoplasmic tail, thus demonstrating the specific inhibitory effect of the N–FcRIIB1 interaction. MV-N- and N-mediated apoptosis through FcRIIB1 was inhibited by the pan-caspase inhibitor zVAD-FMK, indicating that apoptosis was dependent on caspase activation. By using N deletion proteins, it was also shown that the region of N responsible for binding to human NR and for cell growth arrest maps to one of the three conserved boxes (Box1, aa 401–420) found in N of . This work unveils novel mechanisms by which distinct domains of MV-N may display different immunosuppressive activities, thus contributing to our comprehension of the immunosuppressive state associated with MV infection. Finally, MV-N domains may be good tools to target tumour cell proliferation and/or apoptosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80791-0
2005-06-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861771.html?itemId=/content/journal/jgv/10.1099/vir.0.80791-0&mimeType=html&fmt=ahah

References

  1. Avota, E., Avots, A., Niewiesk, S., Kane, L. P., Bommhardt, U., ter Meulen, V. & Schneider-Schaulies, S. ( 2001; ). Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7, 725–731.[CrossRef]
    [Google Scholar]
  2. Bankamp, B., Horikami, S. M., Thompson, P. D., Huber, M., Billeter, M. & Moyer, S. A. ( 1996; ). Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology 216, 272–277.[CrossRef]
    [Google Scholar]
  3. Beckford, A. P., Kaschula, R. O. & Stephen, C. ( 1985; ). Factors associated with fatal cases of measles. A retrospective autopsy study. S Afr Med J 68, 858–863.
    [Google Scholar]
  4. Bourhis, J., Johansson, K., Receveur-Bréchot, V., Oldfield, C. J., Dunker, K. A., Canard, B. & Longhi, S. ( 2004; ). The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Res 99, 157–167.[CrossRef]
    [Google Scholar]
  5. Buckland, R., Giraudon, P. & Wild, F. ( 1989; ). Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. J Gen Virol 70, 435–441.[CrossRef]
    [Google Scholar]
  6. Cassard, L., Cohen-Solal, J. F., Galinha, A. & 7 other authors ( 2002; ). Modulation of tumor growth by inhibitory Fcγ receptor expressed by human melanoma cells. J Clin Invest 110, 1549–1557.[CrossRef]
    [Google Scholar]
  7. Choi, K.-S., Nah, J.-J., Ko, Y.-J., Choi, C.-U., Kim, J.-H., Kang, S.-Y. & Joo, Y.-S. ( 2003; ). Characterization of antigenic sites on the rinderpest virus N protein using monoclonal antibodies. J Vet Sci 4, 57–65.
    [Google Scholar]
  8. Choi, K.-S., Nah, J.-J., Ko, Y.-J., Kang, S.-Y., Yoon, K.-J. & Joo, Y.-S. ( 2004; ). Characterization of immunodominant linear B-cell epitopes on the carboxy terminus of the rinderpest virus nucleocapsid protein. Clin Diagn Lab Immunol 11, 658–664.
    [Google Scholar]
  9. Cohen-Solal, J. F., Cassard, L., Fridman, W. H. & Sautes-Fridman, C. ( 2004; ). Fc γ receptors. Immunol Lett 92, 199–205.[CrossRef]
    [Google Scholar]
  10. Curran, J. & Kolakofsky, D. ( 1999; ). Replication of paramyxoviruses. Adv Virus Res 54, 403–422.
    [Google Scholar]
  11. Curran, J., Homann, H., Buchholz, C., Rochat, S., Neubert, W. & Kolakofsky, D. ( 1993; ). The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein is required for template function but not for RNA encapsidation. J Virol 67, 4358–4364.
    [Google Scholar]
  12. Diallo, A., Barrett, T., Barbron, M., Meyer, G. & Lefevre, P. C. ( 1994; ). Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus: relationship to other morbilliviruses. J Gen Virol 75, 233–237.[CrossRef]
    [Google Scholar]
  13. Etchart, N., Desmoulins, P. O., Chemin, K., Maliszewski, C., Dubois, B., Wild, F. & Kaiserlian, D. ( 2001; ). Dendritic cells recruitment and in vivo priming of CD8+ CTL induced by a single topical or transepithelial immunization via the buccal mucosa with measles virus nucleoprotein. J Immunol 167, 384–391.[CrossRef]
    [Google Scholar]
  14. Fujinami, R. S., Sun, X., Howell, J. M., Jenkin, J. C. & Burns, J. B. ( 1998; ). Modulation of immune system function by measles virus infection: role of soluble factor and direct infection. J Virol 72, 9421–9427.
    [Google Scholar]
  15. Gerlier, D., Valentin, H., Laine, D., Rabourdin-Combe, C. & Servet-Delprat, C. ( 2005; ). Subversion of the immune system by measles virus: a model for the intricate interplay between a virus and the immune system. In Microbial Subversion of Host Immunity, pp. 1–81. Edited by P. Lachmman & M. B. Oldstone. Norfolk: Horizon Scientific Press.
  16. Giraudon, P. & Wild, T. F. ( 1981; ). Monoclonal antibodies against measles virus. J Gen Virol 54, 325–332.[CrossRef]
    [Google Scholar]
  17. Giraudon, P., Jacquier, M. F. & Wild, T. F. ( 1988; ). Antigenic analysis of African measles virus field isolates: identification and localization of one conserved and two variable epitope sites on the NP protein. Virus Res 10, 137–152.[CrossRef]
    [Google Scholar]
  18. Graves, M., Griffin, D. E., Johnson, R. T., Hirsch, R. L., de Soriano, I. L., Roedenbeck, S. & Vaisberg, A. ( 1984; ). Development of antibody to measles virus polypeptides during complicated and uncomplicated measles virus infections. J Virol 49, 409–412.
    [Google Scholar]
  19. Grazia Cappiello, M., Sutterwala, F. S., Trinchieri, G., Mosser, D. M. & Ma, X. ( 2001; ). Suppression of IL-12 transcription in macrophages following Fcγ receptor ligation. J Immunol 166, 4498–4506.[CrossRef]
    [Google Scholar]
  20. Griffin, D. E. ( 1995; ). Immune responses during measles virus infection. Curr Top Microbiol Immunol 191, 117–134.
    [Google Scholar]
  21. Hahm, B., Arbour, N., Naniche, D., Homann, D., Manchester, M. & Oldstone, M. B. ( 2003; ). Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 77, 3505–3515.[CrossRef]
    [Google Scholar]
  22. Harty, R. N. & Palese, P. ( 1995; ). Measles virus phosphoprotein (P) requires the NH2- and COOH-terminal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself. J Gen Virol 76, 2863–2867.[CrossRef]
    [Google Scholar]
  23. Heaney, J., Barrett, T. & Cosby, S. L. ( 2002; ). Inhibition of in vitro leukocyte proliferation by morbilliviruses. J Virol 76, 3579–3584.[CrossRef]
    [Google Scholar]
  24. Ilonen, J., Makela, M. J., Ziola, B. & Salmi, A. A. ( 1990; ). Cloning of human T cells specific for measles virus haemagglutinin and nucleocapsid. Clin Exp Immunol 81, 212–217.
    [Google Scholar]
  25. Jacobson, S., Sekaly, R. P., Jacobson, C. L., McFarland, H. F. & Long, E. O. ( 1989; ). HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63, 1756–1762.
    [Google Scholar]
  26. Johansson, K., Bourhis, J. M., Campanacci, V., Cambillau, C., Canard, B. & Longhi, S. ( 2003; ). Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278, 44567–44573.[CrossRef]
    [Google Scholar]
  27. Karlin, D., Longhi, S. & Canard, B. ( 2002; ). Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. Virology 302, 420–432.[CrossRef]
    [Google Scholar]
  28. Karlin, D., Ferron, F., Canard, B. & Longhi, S. ( 2003; ). Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84, 3239–3252.[CrossRef]
    [Google Scholar]
  29. Laine, D., Trescol-Biemont, M. C., Longhi, S. & 8 other authors ( 2003; ). Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcγRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77, 11332–11346.[CrossRef]
    [Google Scholar]
  30. Liston, P., Batal, R., DiFlumeri, C. & Briedis, D. J. ( 1997; ). Protein interaction domains of the measles virus nucleocapsid protein (NP). Arch Virol 142, 305–321.[CrossRef]
    [Google Scholar]
  31. Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S. & Canard, B. ( 2003; ). The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278, 18638–18648.[CrossRef]
    [Google Scholar]
  32. Malbec, O., Fridman, W. H. & Daeron, M. ( 1999; ). Negative regulation of hematopoietic cell activation and proliferation by Fc γ RIIB. Curr Top Microbiol Immunol 244, 13–27.
    [Google Scholar]
  33. Marie, J. C., Kehren, J., Trescol-Biemont, M. C. & 8 other authors ( 2001; ). Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14, 69–79.[CrossRef]
    [Google Scholar]
  34. McChesney, M. B., Kehrl, J. H., Valsamakis, A., Fauci, A. S. & Oldstone, M. B. ( 1987; ). Measles virus infection of B lymphocytes permits cellular activation but blocks progression through the cell cycle. J Virol 61, 3441–3447.
    [Google Scholar]
  35. McChesney, M. B., Altman, A. & Oldstone, M. B. ( 1988; ). Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1. J Immunol 140, 1269–1273.
    [Google Scholar]
  36. Miller, D. L. ( 1964; ). Frequency of complications of measles, 1963. Report on a national inquiry by the Public Health Laboratory Service in collaboration with the Society of Medical Officers of Health. Br Med J 5401, 75–78.
    [Google Scholar]
  37. Mondal, B., Sreenivasa, B. P., Dhar, P., Singh, R. P. & Bandyopadhyay, S. K. ( 2001; ). Apoptosis induced by peste des petits ruminants virus in goat peripheral blood mononuclear cells. Virus Res 73, 113–119.[CrossRef]
    [Google Scholar]
  38. Moss, W. J. & Polack, F. P. ( 2001; ). Immune responses to measles and measles vaccine: challenges for measles control. Viral Immunol 14, 297–309.[CrossRef]
    [Google Scholar]
  39. Naniche, D., Reed, S. I. & Oldstone, M. B. ( 1999; ). Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73, 1894–1901.
    [Google Scholar]
  40. Niewiesk, S., Eisenhuth, I., Fooks, A., Clegg, J. C., Schnorr, J. J., Schneider-Schaulies, S. & ter Meulen, V. ( 1997; ). Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins. J Virol 71, 7214–7219.
    [Google Scholar]
  41. Norrby, E. & Gollmar, Y. ( 1972; ). Appearance and persistence of antibodies against different virus components after regular measles infections. Infect Immun 6, 240–247.
    [Google Scholar]
  42. Okada, H., Kobune, F., Sato, T. A., Kohama, T., Takeuchi, Y., Abe, T., Takayama, N., Tsuchiya, T. & Tashiro, M. ( 2000; ). Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients. Arch Virol 145, 905–920.[CrossRef]
    [Google Scholar]
  43. Okada, H., Sato, T. A., Katayama, A. & 8 other authors ( 2001; ). Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch Virol 146, 859–874.[CrossRef]
    [Google Scholar]
  44. Olszewska, W., Erume, J., Ripley, J., Steward, M. W. & Partidos, C. D. ( 2001; ). Immune responses and protection induced by mucosal and systemic immunization with recombinant measles nucleoprotein in a mouse model of measles virus-induced encephalitis. Arch Virol 146, 293–302.[CrossRef]
    [Google Scholar]
  45. Pearse, R. N., Kawabe, T., Bolland, S., Guinamard, R., Kurosaki, T. & Ravetch, J. V. ( 1999; ). SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity 10, 753–760.[CrossRef]
    [Google Scholar]
  46. Pfeuffer, J., Puschel, K., Meulen, V., Schneider-Schaulies, J. & Niewiesk, S. ( 2003; ). Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model (Sigmodon hispidus). J Virol 77, 150–158.[CrossRef]
    [Google Scholar]
  47. Planz, O., Pleschka, S., Oesterle, K., Berberich-Siebelt, F., Ehrhardt, C., Stitz, L. & Ludwig, S. ( 2003; ). Borna disease virus nucleoprotein interacts with the CDC2–cyclin B1 complex. J Virol 77, 11186–11192.[CrossRef]
    [Google Scholar]
  48. Pulford, K., Ralfkiaer, E., MacDonald, S. M., Erber, W. N., Falini, B., Gatter, K. C. & Mason, D. Y. ( 1986; ). A new monoclonal antibody (KB61) recognizing a novel antigen which is selectively expressed on a subpopulation of human B lymphocytes. Immunology 57, 71–76.
    [Google Scholar]
  49. Ravanel, K., Castelle, C., Defrance, T., Wild, T. F., Charron, D., Lotteau, V. & Rabourdin-Combe, C. ( 1997; ). Measles virus nucleocapsid protein binds to FcγRII and inhibits human B cell antibody production. J Exp Med 186, 269–278.[CrossRef]
    [Google Scholar]
  50. Ravetch, J. V. & Bolland, S. ( 2001; ). IgG Fc receptors. Annu Rev Immunol 19, 275–290.[CrossRef]
    [Google Scholar]
  51. Realdon, S., Gerotto, M., Dal Pero, F., Marin, O., Granato, A., Basso, G., Muraca, M. & Alberti, A. ( 2004; ). Proapoptotic effect of hepatitis C virus CORE protein in transiently transfected cells is enhanced by nuclear localization and is dependent on PKR activation. J Hepatol 40, 77–85.
    [Google Scholar]
  52. Reth, M. ( 1989; ). Antigen receptor tail clue. Nature 338, 383–384.
    [Google Scholar]
  53. Sanchez-Lanier, M., Guerin, P., McLaren, L. C. & Bankhurst, A. D. ( 1988; ). Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol 116, 367–381.[CrossRef]
    [Google Scholar]
  54. Schlender, J., Schnorr, J. J., Spielhoffer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. ( 1996; ). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93, 13194–13199.[CrossRef]
    [Google Scholar]
  55. Schneider-Schaulies, S. & ter Meulen, V. ( 2002; ). Modulation of immune functions by measles virus. Springer Semin Immunopathol 24, 127–148.[CrossRef]
    [Google Scholar]
  56. Schobesberger, M., Summerfield, A., Doherr, M. G., Zurbriggen, A. & Griot, C. ( 2005; ). Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis. Vet Immunol Immunopathol 104, 33–44.[CrossRef]
    [Google Scholar]
  57. Servet-Delprat, C., Vidalain, P.-O., Valentin, H. & Rabourdin-Combe, C. ( 2003; ). Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression. Curr Top Microbiol Immunol 276, 103–123.
    [Google Scholar]
  58. Stolte, M., Haas, L., Wamwayi, H. M., Barrett, T. & Wohlsein, P. ( 2002; ). Induction of apoptotic cellular death in lymphatic tissues of cattle experimentally infected with different strains of rinderpest virus. J Comp Pathol 127, 14–21.[CrossRef]
    [Google Scholar]
  59. Sun, X., Burns, J. B., Howell, J. M. & Fujinami, R. S. ( 1998; ). Suppression of antigen-specific T cell proliferation by measles virus infection: role of a soluble factor in suppression. Virology 246, 24–33.[CrossRef]
    [Google Scholar]
  60. tenOever, B. R., Servant, M. J., Grandvaux, N., Lin, R. & Hiscott, J. ( 2002; ). Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76, 3659–3669.[CrossRef]
    [Google Scholar]
  61. Toba, K., Winton, E. F., Koike, T. & Shibata, A. ( 1995; ). Simultaneous three-color analysis of the surface phenotype and DNA–RNA quantitation using 7-amino-actinomycin D and pyronin Y. J Immunol Methods 182, 193–207.[CrossRef]
    [Google Scholar]
  62. Tsubata, T. ( 1999; ). Co-receptors on B lymphocytes. Curr Opin Immunol 11, 249–255.[CrossRef]
    [Google Scholar]
  63. Valentin, H., Azocar, O., Horvat, B., Williems, R., Garrone, R., Evlashev, A., Toribio, M. L. & Rabourdin-Combe, C. ( 1999; ). Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol 73, 2212–2221.
    [Google Scholar]
  64. van Binnendijk, R. S., Poelen, M. C., de Vries, P., Voorma, H. O., Osterhaus, A. D. & Uytdehaag, F. G. ( 1989; ). Measles virus-specific human T cell clones. Characterization of specificity and function of CD4+ helper/cytotoxic and CD8+ cytotoxic T cell clones. J Immunol 142, 2847–2854.
    [Google Scholar]
  65. Wang, M., Libbey, J. E., Tsunoda, I. & Fujinami, R. S. ( 2003; ). Modulation of immune system function by measles virus infection. II. Infection of B cells leads to the production of a soluble factor that arrests uninfected B cells in G0/G1. Viral Immunol 16, 45–55.[CrossRef]
    [Google Scholar]
  66. Yao, Z. Q., Eisen-Vandervelde, A., Ray, S. & Hahn, Y. S. ( 2003; ). HCV core/gC1qR interaction arrests T cell cycle progression through stabilization of the cell cycle inhibitor p27Kip1. Virology 314, 271–282.[CrossRef]
    [Google Scholar]
  67. Zhang, X., Glendening, C., Linke, H., Parks, C. L., Brooks, C., Udem, S. A. & Oglesbee, M. ( 2002; ). Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76, 8737–8746.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80791-0
Loading
/content/journal/jgv/10.1099/vir.0.80791-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error