1887

Abstract

Influenza C virus contains two envelope glycoproteins: CM2, a putative ion channel protein; and HEF, a unique multifunctional protein that performs receptor-binding, receptor-destroying and fusion activities. Here, it is demonstrated that expression of HEF is sufficient to pseudotype replication-incompetent vesicular stomatitis virus (VSV) that lacks the VSV glycoprotein (G) gene. The pseudotyped virus showed characteristic features of influenza C virus with respect to proteolytic activation, receptor usage and cell tropism. Chimeric glycoproteins composed of HEF ectodomain and VSV-G C-terminal domains were efficiently incorporated into VSV particles and showed receptor-binding and receptor-destroying activities but, unlike authentic HEF, did not mediate efficient infection, probably because of impaired fusion activity. HEF-pseudotyped VSV efficiently infected polarized Madin–Darby canine kidney cells via the apical plasma membrane, whereas entry of VSV-G-complemented virus was restricted to the basolateral membrane. These findings suggest that pseudotyping of viral vectors with HEF might be useful for efficient apical gene transfer into polarized epithelial cells and for targeting cells that express 9--acetylated sialic acids.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80788-0
2005-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861455.html?itemId=/content/journal/jgv/10.1099/vir.0.80788-0&mimeType=html&fmt=ahah

References

  1. Bagai S., Lamb R. A. 1996; Truncation of the COOH-terminal region of the paramyxovirus SV5 fusion protein leads to hemifusion but not complete fusion. J Cell Biol 135:73–84 [CrossRef]
    [Google Scholar]
  2. Bals R., Xiao W., Sang N., Weiner D. J., Meegalla R. L., Wilson J. M. 1999; Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J Virol 73:6085–6088
    [Google Scholar]
  3. Beyene A., Basu A., Meyer K., Ray R. 2004; Influence of N -linked glycans on intracellular transport of hepatitis C virus E1 chimeric glycoprotein and its role in pseudotype virus infectivity. Virology 324:273–285 [CrossRef]
    [Google Scholar]
  4. Buchholz U. J., Finke S., Conzelmann K. K. 1999; Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259
    [Google Scholar]
  5. Buonagurio D. A., Nakada S., Desselberger U., Krystal M., Palese P. 1985; Noncumulative sequence changes in the hemagglutinin genes of influenza C virus isolates. Virology 146:221–232 [CrossRef]
    [Google Scholar]
  6. Burioni R., Matsuura Y., Mancini N., Tani H., Miyamura T., Varaldo P. E., Clementi M. 2002; Diverging effects of human recombinant anti-hepatitis C virus (HCV) antibody fragments derived from a single patient on the infectivity of a vesicular stomatitis virus/HCV pseudotype. J Virol 76:11775–11779 [CrossRef]
    [Google Scholar]
  7. Cozens A. L., Yezzi M. J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W. E., Widdicombe J. H., Gruenert D. C. 1994; CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47 [CrossRef]
    [Google Scholar]
  8. Döll B., Pleschka S., Zimmer G., Herrler G. 1993; Surface glycoprotein of influenza C virus: inactivation and restoration of the acetylesterase activity on nitrocellulose. Virus Res 30:105–110 [CrossRef]
    [Google Scholar]
  9. Duan D., Yue Y., Yan Z., McCray P. B. Jr, Engelhardt J. F. 1998; Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia. Hum Gene Ther 9:2761–2776 [CrossRef]
    [Google Scholar]
  10. Fischer C., Schroth-Diez B., Herrmann A., Garten W., Klenk H. D. 1998; Acylation of the influenza hemagglutinin modulates fusion activity. Virology 248:284–294 [CrossRef]
    [Google Scholar]
  11. Formanowski F., Wharton S. A., Calder L. J., Hofbauer C., Meier-Ewert H. 1990; Fusion characteristics of influenza C viruses. J Gen Virol 71:1181–1188 [CrossRef]
    [Google Scholar]
  12. Fuller S., von Bonsdorff C. H., Simons K. 1984; Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell 38:65–77 [CrossRef]
    [Google Scholar]
  13. Herrler G., Klenk H. D. 1987; The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology 159:102–108 [CrossRef]
    [Google Scholar]
  14. Herrler G., Klenk H. D. 1991; Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40:213–234
    [Google Scholar]
  15. Herrler G., Compans R. W., Meier-Ewert H. 1979; A precursor glycoprotein in influenza C virus. Virology 99:49–56 [CrossRef]
    [Google Scholar]
  16. Herrler G., Rott R., Klenk H. D., Muller H. P., Shukla A. K., Schauer R. 1985; The receptor-destroying enzyme of influenza C virus is neuraminate- O -acetylesterase. EMBO J 4:1503–1506
    [Google Scholar]
  17. Herrler G., Reuter G., Rott R., Klenk H. D., Schauer R. 1987; N -Acetyl-9- O -acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol Chem Hoppe Seyler 368:451–454 [CrossRef]
    [Google Scholar]
  18. Höfling K., Brossmer R., Klenk H., Herrler G. 1996; Transfer of an esterase-resistant receptor analog to the surface of influenza C virions results in reduced infectivity due to aggregate formation. Virology 218:127–133 [CrossRef]
    [Google Scholar]
  19. Hongo S., Ishii K., Mori K., Takashita E., Muraki Y., Matsuzaki Y., Sugawara K. 2004; Detection of ion channel activity in Xenopus laevis oocytes expressing influenza C virus CM2 protein. Arch Virol 149:35–50
    [Google Scholar]
  20. Ito H., Watanabe S., Takada A., Kawaoka Y. 2001; Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75:1576–1580 [CrossRef]
    [Google Scholar]
  21. Kitson C., Angel B., Judd D. 8 other authors 1999; The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther 6:534–546 [CrossRef]
    [Google Scholar]
  22. Köhl W., Zimmer G., Greiser-Wilke I., Haas L., Moennig V., Herrler G. 2004; The surface glycoprotein E2 of bovine viral diarrhoea virus contains an intracellular localization signal. J Gen Virol 85:1101–1111 [CrossRef]
    [Google Scholar]
  23. Lagging L. M., Meyer K., Owens R. J., Ray R. 1998; Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol 72:3539–3546
    [Google Scholar]
  24. Lefrancois L., Lyles D. S. 1982a; The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology 121:157–167 [CrossRef]
    [Google Scholar]
  25. Lefrancois L., Lyles D. S. 1982b; The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. II. Monoclonal antibodies of non-neutralizing and cross-reactive epitopes of Indiana and New Jersey serotypes. Virology 121:168–174 [CrossRef]
    [Google Scholar]
  26. Marschall M., Herrler G., Oswald C., Foerst G., Meier-Ewert H. 1994; Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein. J Gen Virol 75:2189–2196 [CrossRef]
    [Google Scholar]
  27. Matsuura Y., Tani H., Suzuki K. 8 other authors 2001; Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286:263–275 [CrossRef]
    [Google Scholar]
  28. Meyer K., Basu A., Ray R. 2000; Functional features of hepatitis C virus glycoproteins for pseudotype virus entry into mammalian cells. Virology 276:214–226 [CrossRef]
    [Google Scholar]
  29. Oeffner F., Klenk H. D., Herrler G. 1999; The cytoplasmic tail of the influenza C virus glycoprotein HEF negatively affects transport to the cell surface. J Gen Virol 80:363–369
    [Google Scholar]
  30. Ogino M., Ebihara H., Lee B. H., Araki K., Lundkvist A., Kawaoka Y., Yoshimatsu K., Arikawa J. 2003; Use of vesicular stomatitis virus pseudotypes bearing hantaan or Seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol 10:154–160
    [Google Scholar]
  31. Ohuchi M., Fischer C., Ohuchi R., Herwig A., Klenk H. D. 1998; Elongation of the cytoplasmic tail interferes with the fusion activity of influenza virus hemagglutinin. J Virol 72:3554–3559
    [Google Scholar]
  32. Okuma K., Matsuura Y., Tatsuo H., Inagaki Y., Nakamura M., Yamamoto N., Yanagi Y. 2001; Analysis of the molecules involved in human T-cell leukaemia virus type 1 entry by a vesicular stomatitis virus pseudotype bearing its envelope glycoproteins. J Gen Virol 82:821–830
    [Google Scholar]
  33. Pekosz A., Lamb R. A. 1999; Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA. J Virol 73:8808–8812
    [Google Scholar]
  34. Perez M., Watanabe M., Whitt M. A., de la Torre J. C. 2001; N-terminal domain of Borna disease virus G (p56) protein is sufficient for virus receptor recognition and cell entry. J Virol 75:7078–7085 [CrossRef]
    [Google Scholar]
  35. Pfeifer J. B., Compans R. W. 1984; Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus Res 1:281–296 [CrossRef]
    [Google Scholar]
  36. Pickles R. J., McCarty D., Matsui H., Hart P. J., Randell S. H., Boucher R. C. 1998; Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol 72:6014–6023
    [Google Scholar]
  37. Robison C. S., Whitt M. A. 2000; The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74:2239–2246 [CrossRef]
    [Google Scholar]
  38. Rodriguez D., Rodriguez J. R., Ojakian G. K., Esteban M. 1991; Vaccinia virus preferentially enters polarized epithelial cells through the basolateral surface. J Virol 65:494–498
    [Google Scholar]
  39. Rosenthal P. B., Zhang X., Formanowski F., Fitz W., Wong C. H., Meier-Ewert H., Skehel J. J., Wiley D. C. 1998; Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396:92–96 [CrossRef]
    [Google Scholar]
  40. Schlender J., Zimmer G., Herrler G., Conzelmann K. K. 2003; Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J Virol 77:4609–4616 [CrossRef]
    [Google Scholar]
  41. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996a; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 93:11359–11365 [CrossRef]
    [Google Scholar]
  42. Schnell M. J., Buonocore L., Whitt M. A., Rose J. K. 1996b; The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol 70:2318–2323
    [Google Scholar]
  43. Schnell M. J., Buonocore L., Boritz E., Ghosh H. P., Chernish R., Rose J. K. 1998; Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. EMBO J 17:1289–1296 [CrossRef]
    [Google Scholar]
  44. Strobl B., Vlasak R. 1993; The receptor-destroying enzyme of influenza C virus is required for entry into target cells. Virology 192:679–682 [CrossRef]
    [Google Scholar]
  45. Szepanski S., Gross H. J., Brossmer R., Klenk H. D., Herrler G. 1992; A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology 188:85–92 [CrossRef]
    [Google Scholar]
  46. Szepanski S., Veit M., Pleschka S., Klenk H. D., Schmidt M. F., Herrler G. 1994; Post-translational folding of the influenza C virus glycoprotein HEF: defective processing in cells expressing the cloned gene. J Gen Virol 75:1023–1030 [CrossRef]
    [Google Scholar]
  47. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769 [CrossRef]
    [Google Scholar]
  48. Takeuchi K., Lamb R. A. 1994; Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 68:911–919
    [Google Scholar]
  49. Tatsuo H., Okuma K., Tanaka K., Ono N., Minagawa H., Takade A., Matsuura Y., Yanagi Y. 2000; Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74:4139–4145 [CrossRef]
    [Google Scholar]
  50. Tong S., Li M., Vincent A., Compans R. W., Fritsch E., Beier R., Klenk C., Ohuchi M., Klenk H. D. 2002; Regulation of fusion activity by the cytoplasmic domain of a paramyxovirus F protein. Virology 301:322–333 [CrossRef]
    [Google Scholar]
  51. Varki A. 1992; Diversity in the sialic acids. Glycobiology 2:25–40 [CrossRef]
    [Google Scholar]
  52. Vlasak R., Krystal M., Nacht M., Palese P. 1987; The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 160:419–425 [CrossRef]
    [Google Scholar]
  53. Vlasak R., Muster T., Lauro A. M., Powers J. C., Palese P. 1989; Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function. J Virol 63:2056–2062
    [Google Scholar]
  54. Walters R. W., Grunst T., Bergelson J. M., Finberg R. W., Welsh M. J., Zabner J. 1999; Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274:10219–10226 [CrossRef]
    [Google Scholar]
  55. Wang G., Davidson B. L., Melchert P., Slepushkin V. A., van Es H. H., Bodner M., Jolly D. J., McCray P. B. Jr 1998; Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J Virol 72:9818–9826
    [Google Scholar]
  56. Wang G., Williams G., Xia H., Hickey M., Shao J., Davidson B. L., McCray P. B. 2002; Apical barriers to airway epithelial cell gene transfer with amphotropic retroviral vectors. Gene Ther 9:922–931 [CrossRef]
    [Google Scholar]
  57. Whitt M. A., Chong L., Rose J. K. 1989; Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. J Virol 63:3569–3578
    [Google Scholar]
  58. Whittaker G., Bui M., Helenius A. 1996; The role of nuclear import and export in influenza virus infection. Trends Cell Biol 6:67–71 [CrossRef]
    [Google Scholar]
  59. Zabner J., Freimuth P., Puga A., Fabrega A., Welsh M. J. 1997; Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. J Clin Invest 100:1144–1149 [CrossRef]
    [Google Scholar]
  60. Zhirnov O. P., Grigoriev V. B. 1994; Disassembly of influenza C viruses, distinct from that of influenza A and B viruses requires neutral-alkaline pH. Virology 200:284–291 [CrossRef]
    [Google Scholar]
  61. Zimmer G., Reuter G., Schauer R. 1992; Use of influenza C virus for detection of 9- O -acetylated sialic acids on immobilized glycoconjugates by esterase activity. Eur J Biochem 204:209–215 [CrossRef]
    [Google Scholar]
  62. Zimmer G., Suguri T., Reuter G., Yu R. K., Schauer R., Herrler G. 1994; Modification of sialic acids by 9- O -acetylation is detected in human leucocytes using the lectin property of influenza C virus. Glycobiology 4:343–349 [CrossRef]
    [Google Scholar]
  63. Zimmer G., Klenk H. D., Herrler G. 1995; Identification of a 40-kDa cell surface sialoglycoprotein with the characteristics of a major influenza C virus receptor in a Madin-Darby canine kidney cell line. J Biol Chem 270:17815–17822 [CrossRef]
    [Google Scholar]
  64. Zimmer G., Budz L., Herrler G. 2001; Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem 276:31642–31650 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80788-0
Loading
/content/journal/jgv/10.1099/vir.0.80788-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error