1887

Abstract

(BMV) requires encapsidation-competent coat protein (CP) for cell-to-cell movement and the 3a movement protein (MP) is involved in determining the CP requirement for BMV movement. However, these conclusions have been drawn by using BMV strain M1 (BMV-M1) and a related strain. Here, the ability of the MPs of five other natural BMV strains to mediate the movement of BMV-M1 in the absence of CP was tested. The MP of BMV M2 strain (BMV-M2) efficiently mediated the movement of CP-deficient BMV-M1 and the MPs of two other strains functioned similarly to some extent. Furthermore, BMV-M2 itself moved between cells independently of CP, demonstrating that BMV-M1 and -M2 use different movement modes. Reassortment between CP-deficient BMV-M1 and -M2 showed the involvement of RNA3 in determining the CP requirement for cell-to-cell movement and the involvement of RNAs 1 and 2 in movement efficiency and symptom induction in the absence of CP. Spontaneous BMV MP mutants generated that exhibited CP-independent movement were also isolated and analysed. Comparison of the nucleotide differences of the MP genes of BMV-M1, the natural strains and mutants capable of CP-independent movement, together with further mutational analysis of BMV-M1 MP, revealed that single amino acid differences at the C terminus of MP are sufficient to alter the requirement for CP in the movement of BMV-M1. Based on these findings, a possible virus strategy in which a movement mode is selected in plant viruses to optimize viral infectivity in plants is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80775-0
2005-04-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir861201.html?itemId=/content/journal/jgv/10.1099/vir.0.80775-0&mimeType=html&fmt=ahah

References

  1. Ahlquist, P. ( 1999; ). Bromoviruses (Bromoviridae). In Encyclopedia of Virology, 2nd edn, vol. 1, pp. 198–204. Edited by A. Granoff & R. G. Webster. San Diego, CA: Academic Press.
  2. Ahlquist, P., French, R., Janda, M. & Loesch-Fries, L. S. ( 1984; ). Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc Natl Acad Sci U S A 81, 7066–7070.[CrossRef]
    [Google Scholar]
  3. Andreev, I. A., Kim, S. H., Kalinina, N. O., Rakitina, D. V., Fitzgerald, A. G., Palukaitis, P. & Taliansky, M. E. ( 2004; ). Molecular interactions between a plant virus movement protein and RNA: force spectroscopy investigation. J Mol Biol 339, 1041–1047.[CrossRef]
    [Google Scholar]
  4. Blackman, L. M., Boevink, P., Santa Cruz, S., Palukaitis, P. & Oparka, K. J. ( 1998; ). The movement protein of Cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10, 525–537.[CrossRef]
    [Google Scholar]
  5. Callaway, A., Giesman-Cookmeyer, D., Gillock, E. T., Sit, T. L. & Lommel, S. A. ( 2001; ). The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39, 419–460.[CrossRef]
    [Google Scholar]
  6. Canto, T., Prior, D. A. M., Hellwald, K.-H., Oparka, K. J. & Palukaitis, P. ( 1997; ). Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237, 237–248.[CrossRef]
    [Google Scholar]
  7. Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. ( 1996; ). Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669–1681.[CrossRef]
    [Google Scholar]
  8. Carvalho, C. M., Wellink, J., Ribeiro, S. G., Goldbach, R. W. & van Lent, J. W. M. ( 2003; ). The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84, 2271–2277.[CrossRef]
    [Google Scholar]
  9. Citovsky, V., Knorr, D., Schuster, G. & Zambryski, P. ( 1990; ). The P30 movement protein of tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell 60, 637–647.[CrossRef]
    [Google Scholar]
  10. De Jong, W. & Ahlquist, P. ( 1995; ). Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range. J Virol 69, 1485–1492.
    [Google Scholar]
  11. De Jong, W., Chu, A. & Ahlquist, P. ( 1995; ). Coding changes in the 3a cell-to-cell movement gene can extend the host range of brome mosaic virus systemic infection. Virology 214, 464–474.[CrossRef]
    [Google Scholar]
  12. Dreher, T. W., Rao, A. L. N. & Hall, T. C. ( 1989; ). Replication in vivo of mutant brome mosaic virus RNAs defective in aminoacylation. J Mol Biol 206, 425–438.[CrossRef]
    [Google Scholar]
  13. Fujisaki, K., Hagihara, H., Kaido, M., Mise, K. & Okuno, T. ( 2003; ). Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabidopsis thaliana. Arch Virol 148, 165–175.[CrossRef]
    [Google Scholar]
  14. Fujita, Y., Mise, K., Okuno, T., Ahlquist, P. & Furusawa, I. ( 1996; ). A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host. Virology 223, 283–291.[CrossRef]
    [Google Scholar]
  15. Fujita, M., Mise, K. & Furusawa, I. ( 1999; ). Expression and characterization of the 3a movement protein of cowpea chlorotic mottle bromovirus. Arch Virol 144, 2449–2456.[CrossRef]
    [Google Scholar]
  16. Janda, M., French, R. & Ahlquist, P. ( 1987; ). High efficiency T7 polymerase synthesis of infectious RNA from cloned brome mosaic virus cDNA and effects of 5′ extensions on transcript infectivity. Virology 158, 259–262.[CrossRef]
    [Google Scholar]
  17. Kaplan, I. B., Zhang, L. & Palukaitis, P. ( 1998; ). Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 246, 221–231.[CrossRef]
    [Google Scholar]
  18. Kasteel, D. T. J., van der Wel, N. N., Jansen, K. A. J., Goldbach, R. W. & van Lent, J. W. M. ( 1997; ). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. J Gen Virol 78, 2089–2093.
    [Google Scholar]
  19. Kim, S. H., Kalinina, N. O., Andreev, I., Ryabov, E. V., Fitzgerald, A. G., Taliansky, M. E. & Palukaitis, P. ( 2004; ). The C-terminal 33 amino acids of the cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J Gen Virol 85, 221–230.[CrossRef]
    [Google Scholar]
  20. Kroner, P. & Ahlquist, P. ( 1992; ). RNA-based viruses. In Molecular Plant Pathology: a Practical Approach, vol. 1, pp. 23–34. Edited by S. J. Gurr, M. J. McPherson & D. J. Bowles. Oxford: Oxford University Press.
  21. Kroner, P., Richards, D., Traynor, P. & Ahlquist, P. ( 1989; ). Defined mutations in a small region of the brome mosaic virus 2a gene cause diverse temperature-sensitive RNA replication phenotypes. J Virol 63, 5302–5309.
    [Google Scholar]
  22. Kroner, P. A., Young, B. M. & Ahlquist, P. ( 1990; ). Analysis of the role of brome mosaic virus 1a protein domains in RNA replication, using linker insertion mutagenesis. J Virol 64, 6110–6120.
    [Google Scholar]
  23. Lane, L. C. ( 1974; ). The bromoviruses. Adv Virus Res 19, 151–220.
    [Google Scholar]
  24. Lane, L. C. ( 1981; ). Bromoviruses. In Handbook of Plant Virus Infections: Comparative Diagnosis, pp. 333–376. Edited by E. Kurstak. Amsterdam: Elsevier.
  25. Lazarowitz, S. G. & Beachy, R. N. ( 1999; ). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.[CrossRef]
    [Google Scholar]
  26. Mise, K., Allison, R. F., Janda, M. & Ahlquist, P. ( 1993; ). Bromovirus movement protein genes play a crucial role in host specificity. J Virol 67, 2815–2823.
    [Google Scholar]
  27. Mise, K., Mori, M., Nakayashiki, H., Koyama, T., Okuno, T. & Furusawa, I. ( 1994; ). Nucleotide sequence of a set of cDNA clones derived from the brome mosaic virus ATCC66 strain and comparison with the Russian strain genome. Ann Phytopath Soc Jpn 60, 454–462.[CrossRef]
    [Google Scholar]
  28. Mori, M., Zhang, G.-H., Kaido, M., Okuno, T. & Furusawa, I. ( 1993; ). Efficient production of human gamma interferon in tobacco protoplasts by genetically engineered brome mosaic virus RNAs. J Gen Virol 74, 1255–1260.[CrossRef]
    [Google Scholar]
  29. Nagano, H., Mise, K., Okuno, T. & Furusawa, I. ( 1999; ). The cognate coat protein is required for cell-to-cell movement of a chimeric brome mosaic virus mediated by the cucumber mosaic virus movement protein. Virology 265, 226–234.[CrossRef]
    [Google Scholar]
  30. Nagano, H., Mise, K., Furusawa, I. & Okuno, T. ( 2001; ). Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J Virol 75, 8045–8053.[CrossRef]
    [Google Scholar]
  31. Okinaka, Y., Mise, K., Suzuki, E., Okuno, T. & Furusawa, I. ( 2001; ). The C terminus of brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J Virol 75, 5385–5390.[CrossRef]
    [Google Scholar]
  32. Osman, T. A. M., Hayes, R. J. & Buck, K. W. ( 1992; ). Cooperative binding of the red clover necrotic mosaic virus movement protein to single-stranded nucleic acids. J Gen Virol 73, 223–227.[CrossRef]
    [Google Scholar]
  33. Osman, F., Schmitz, I. & Rao, A. L. N. ( 1999; ). Effect of C-terminal deletions in the movement protein of cowpea chlorotic mottle virus on cell-to-cell and long-distance movement. J Gen Virol 80, 1357–1365.
    [Google Scholar]
  34. Rao, A. L. N. ( 1997; ). Molecular studies on bromovirus capsid protein. III. Analysis of cell-to-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus. Virology 232, 385–395.[CrossRef]
    [Google Scholar]
  35. Rao, A. L. N. & Grantham, G. L. ( 1995; ). Biological significance of the seven amino-terminal basic residues of brome mosaic virus coat protein. Virology 211, 42–52.[CrossRef]
    [Google Scholar]
  36. Rao, A. L. N. & Grantham, G. L. ( 1996; ). Molecular studies on bromovirus capsid protein. II. Functional analysis of the amino-terminal arginine-rich motif and its role in encapsidation, movement, and pathology. Virology 226, 294–305.[CrossRef]
    [Google Scholar]
  37. Sánchez-Navarro, J. A. & Bol, J. F. ( 2001; ). Role of the Alfalfa mosaic virus movement protein and coat protein in virus transport. Mol Plant Microbe Interact 14, 1051–1062.[CrossRef]
    [Google Scholar]
  38. Sasaki, N., Fujita, Y., Mise, K. & Furusawa, I. ( 2001; ). Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost. Virology 279, 47–57.[CrossRef]
    [Google Scholar]
  39. Sasaki, N., Arimoto, M., Nagano, H., Mori, M., Kaido, M., Mise, K. & Okuno, T. ( 2003; ). The movement protein gene is involved in the virus-specific requirement of the coat protein in cell-to-cell movement of bromoviruses. Arch Virol 148, 803–812.[CrossRef]
    [Google Scholar]
  40. Sasaki, N., Kaido, M., Okuno, T. & Mise, K. ( 2005; ). Coat protein-independent cell-to-cell movement of bromoviruses expressing brome mosaic virus movement protein with an adaptation-related amino acid change in the central region. Arch Virol (in press).
    [Google Scholar]
  41. Schmitz, I. & Rao, A. L. N. ( 1996; ). Molecular studies on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of brome mosaic virus. Virology 226, 281–293.[CrossRef]
    [Google Scholar]
  42. Schmitz, I. & Rao, A. L. N. ( 1998; ). Deletions in the conserved amino-terminal basic arm of cucumber mosaic virus coat protein disrupt virion assembly but do not abolish infectivity and cell-to-cell movement. Virology 248, 323–331.[CrossRef]
    [Google Scholar]
  43. Suzuki, M., Kuwata, S., Kataoka, J., Masuta, C., Nitta, N. & Takanami, Y. ( 1991; ). Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113.[CrossRef]
    [Google Scholar]
  44. Takamatsu, K., Ishikawa, M., Meshi, T. & Okada, Y. ( 1987; ). Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6, 307–311.
    [Google Scholar]
  45. Takeda, A., Kaido, M., Okuno, T. & Mise, K. ( 2004; ). The C terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. J Gen Virol 85, 1751–1761.[CrossRef]
    [Google Scholar]
  46. Valverde, R. A. ( 1987; ). Systemic infection of cowpea by two isolates of brome mosaic virus. Plant Dis 71, 557.
    [Google Scholar]
  47. van Lent, J., Wellink, J. & Goldbach, R. ( 1990; ). Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J Gen Virol 71, 219–223.[CrossRef]
    [Google Scholar]
  48. Wieczorek, A. & Sanfaçon, H. ( 1993; ). Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734–743.[CrossRef]
    [Google Scholar]
  49. Xiong, Z., Kim, K. H., Giesman-Cookmeyer, D. & Lommel, S. A. ( 1993; ). The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192, 27–32.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80775-0
Loading
/content/journal/jgv/10.1099/vir.0.80775-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error