1887

Abstract

Infection of cats with (FIV) is an important model for understanding comparative lentivirus biology. , FIV infects lymphocytes and monocyte/macrophages, but infection is commonly investigated in epithelial Crandell–Reese Feline Kidney (CRFK) cells. In this study, the transcriptional responses of CRFK cells and primary lymphocytes to infection with FIV 34TF, a cloned subtype A virus, and FIV USgaB01, a biological subtype B isolate, were determined. Reverse-transcribed mRNA from both cell types was hybridized to microarrays containing 1700 human expressed sequence tags in duplicate and data were analysed with Significance Analysis of Microarrays () software. Results from six experiments assessing homeostatic cross-species hybridization excluded 3·48 % inconsistently detected transcripts. Analysis of data from five time points over 48 h after infection identified 132 and 24 differentially expressed genes in epithelial cells and lymphocytes, respectively. Genes involved in protein synthesis, the cell cycle, structure and metabolism were affected. The magnitude of gene-expression changes ranged from 0·62 to 1·62 and early gene induction was followed by downregulation after 4 h. Transcriptional changes in CRFK cells were distinct from those in lymphocytes, except for heat-shock cognate protein 71, which was induced at multiple time points in both cell types. These findings indicate that FIV infection induces transcriptional changes of a modest magnitude in a wide range of genes, which is probably reflective of the relatively non-cytopathic nature of virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80735-0
2005-08-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862239.html?itemId=/content/journal/jgv/10.1099/vir.0.80735-0&mimeType=html&fmt=ahah

References

  1. Basu, S., Totty, N. F., Irwin, M. S., Sudol, M. & Downward, J. ( 2003; ). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11, 11–23.[CrossRef]
    [Google Scholar]
  2. Bendinelli, M., Pistello, M., Lombardi, S., Poli, A., Garzelli, C., Matteucci, D., Ceccherini-Nelli, L., Malvaldi, G. & Tozzini, F. ( 1995; ). Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clin Microbiol Rev 8, 87–112.
    [Google Scholar]
  3. Bhattacharyya, T., Karnezis, A. N., Murphy, S. P., Hoang, T., Freeman, B. C., Phillips, B. & Morimoto, R. I. ( 1995; ). Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 270, 1705–1710.[CrossRef]
    [Google Scholar]
  4. Bigger, C. B., Brasky, K. M. & Lanford, R. E. ( 2001; ). DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75, 7059–7066.[CrossRef]
    [Google Scholar]
  5. Burkhard, M. J. & Dean, G. A. ( 2003; ). Transmission and immunopathogenesis of FIV in cats as a model for HIV. Curr HIV Res 1, 15–29.[CrossRef]
    [Google Scholar]
  6. Chang, Y. E. & Laimins, L. A. ( 2000; ). Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74, 4174–4182.[CrossRef]
    [Google Scholar]
  7. Chismar, J. D., Mondala, T., Fox, H. S., Roberts, E., Langford, D., Masliah, E., Salomon, D. R. & Head, S. R. ( 2002; ). Analysis of result variability from high-density oligonucleotide arrays comparing same-species and cross-species hybridizations. Biotechniques 33, 516–522.
    [Google Scholar]
  8. Corbeil, J., Sheeter, D., Genini, D. & 12 other authors ( 2001; ). Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 11, 1198–1204.[CrossRef]
    [Google Scholar]
  9. Cuadras, M. A., Feigelstock, D. A., An, S. & Greenberg, H. B. ( 2002; ). Gene expression pattern in Caco-2 cells following rotavirus infection. J Virol 76, 4467–4482.[CrossRef]
    [Google Scholar]
  10. Cui, X. & Churchill, G. A. ( 2003; ). Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4, 210.[CrossRef]
    [Google Scholar]
  11. Dangles-Marie, V., Richon, S., El-Behi, M. & 10 other authors ( 2003; ). A three-dimensional tumor cell defect in activating autologous CTLs is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation. Cancer Res 63, 3682–3687.
    [Google Scholar]
  12. Dean, G. A. & Pedersen, N. C. ( 1998; ). Cytokine response in multiple lymphoid tissues during the primary phase of feline immunodeficiency virus infection. J Virol 72, 9436–9440.
    [Google Scholar]
  13. Dean, G. A., Reubel, G. H., Moore, P. F. & Pedersen, N. C. ( 1996; ). Proviral burden and infection kinetics of feline immunodeficiency virus in lymphocyte subsets of blood and lymph node. J Virol 70, 5165–5169.
    [Google Scholar]
  14. Dean, G. A., Himathongkham, S. & Sparger, E. E. ( 1999; ). Differential cell tropism of feline immunodeficiency virus molecular clones in vivo. J Virol 73, 2596–2603.
    [Google Scholar]
  15. de Parseval, A., Ngo, S., Sun, P. & Elder, J. H. ( 2004; ). Factors that increase the effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication. J Virol 78, 9132–9143.[CrossRef]
    [Google Scholar]
  16. Deyholos, M. K. & Galbraith, D. W. ( 2001; ). High-density microarrays for gene expression analysis. Cytometry 43, 229–238.[CrossRef]
    [Google Scholar]
  17. Geiss, G. K., Bumgarner, R. E., An, M. C. & 7 other authors ( 2000; ). Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 266, 8–16.[CrossRef]
    [Google Scholar]
  18. Geiss, G. K., An, M. C., Bumgarner, R. E., Hammersmark, E., Cunningham, D. & Katze, M. G. ( 2001; ). Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J Virol 75, 4321–4331.[CrossRef]
    [Google Scholar]
  19. Guerra, S., López-Fernández, L. A., Pascual-Montano, A., Muñoz, M., Harshman, K. & Esteban, M. ( 2003; ). Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J Virol 77, 6493–6506.[CrossRef]
    [Google Scholar]
  20. Hazenberg, M. D., Hamann, D., Schuitemaker, H. & Miedema, F. ( 2000; ). T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 1, 285–289.[CrossRef]
    [Google Scholar]
  21. Higgins, J. P. T., Wang, L., Kambham, N. & 7 other authors ( 2004; ). Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol Biol Cell 15, 649–656.
    [Google Scholar]
  22. Iordanskiy, S., Zhao, Y., Dubrovsky, L., Iordanskaya, T., Chen, M., Liang, D. & Bukrinsky, M. ( 2004; ). Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 78, 9697–9704.[CrossRef]
    [Google Scholar]
  23. Jones, J. O. & Arvin, A. M. ( 2003; ). Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J Virol 77, 1268–1280.[CrossRef]
    [Google Scholar]
  24. Kang-Park, S., Lee, J.-H., Shin, J.-H. & Lee, Y. I. ( 2001; ). Activation of the IGF-II gene by HBV-X protein requires PKC and p44/p42 map kinase signalings. Biochem Biophys Res Commun 283, 303–307.[CrossRef]
    [Google Scholar]
  25. Kellam, P. ( 2001; ). Post-genomic virology: the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev Med Virol 11, 313–329.[CrossRef]
    [Google Scholar]
  26. Lama, J., Mangasarian, A. & Trono, D. ( 1999; ). Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol 9, 622–631.[CrossRef]
    [Google Scholar]
  27. Lerner, D. L., Grant, C. K., de Parseval, A. & Elder, J. H. ( 1998; ). FIV infection of IL-2-dependent and -independent feline lymphocyte lines: host cells range distinctions and specific cytokine upregulation. Vet Immunol Immunopathol 65, 277–297.[CrossRef]
    [Google Scholar]
  28. Leutenegger, C. M., Huder, J. B., Hofmann-Lehmann, R. & Lutz, H. ( 1998; ). Molecular cloning and expression of feline interleukin-16. DNA Seq 9, 59–63.
    [Google Scholar]
  29. Linenberger, M. L. & Deng, T. ( 1999; ). The effects of feline retroviruses on cytokine expression. Vet Immunol Immunopathol 72, 343–368.[CrossRef]
    [Google Scholar]
  30. McCune, J. M. ( 2001; ). The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410, 974–979.[CrossRef]
    [Google Scholar]
  31. Mitchell, R. S., Beitzel, B. F., Schroder, A. R. W., Shinn, P., Chen, H., Berry, C. C., Ecker, J. R. & Bushman, F. D. ( 2004; ). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2, e234.[CrossRef]
    [Google Scholar]
  32. Moody, D. E., Zou, Z. & McIntyre, L. ( 2002; ). Cross-species hybridisation of pig RNA to human nylon microarrays. BMC Genomics 3, 27.[CrossRef]
    [Google Scholar]
  33. Mossman, K. L., Macgregor, P. S., Rozmus, J. J., Goryachev, A. B., Edwards, A. M. & Smiley, J. R. ( 2001; ). Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75, 750–758.[CrossRef]
    [Google Scholar]
  34. Motyka, B., Korbutt, G., Pinkoski, M. J. & 9 other authors ( 2000; ). Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491–500.[CrossRef]
    [Google Scholar]
  35. Nishimura, Y., Miyazawa, T., Ikeda, Y., Izumiya, Y., Nakamura, K., Cai, J. S., Sato, E., Kohmoto, M. & Mikami, T. ( 1998; ). Molecular cloning and sequencing of feline stromal cell-derived factor-1α and β. Eur J Immunogenet 25, 303–305.[CrossRef]
    [Google Scholar]
  36. Otsuka, M., Aizaki, H., Kato, N., Suzuki, T., Miyamura, T., Omata, M. & Seki, N. ( 2003; ). Differential cellular gene expression induced by hepatitis B and C viruses. Biochem Biophys Res Commun 300, 443–447.[CrossRef]
    [Google Scholar]
  37. Phillips, T. R., Talbott, R. L., Lamont, C., Muir, S., Lovelace, K. & Elder, J. H. ( 1990; ). Comparison of two host cell range variants of feline immunodeficiency virus. J Virol 64, 4605–4613.
    [Google Scholar]
  38. Pietiäinen, V., Huttunen, P. & Hyypiä, T. ( 2000; ). Effects of echovirus 1 infection on cellular gene expression. Virology 276, 243–250.[CrossRef]
    [Google Scholar]
  39. Rajpal, A., Cho, Y. A., Yelent, B. & 7 other authors ( 2003; ). Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor. EMBO J 22, 6526–6536.[CrossRef]
    [Google Scholar]
  40. Reggeti, F. & Bienzle, D. ( 2004; ). Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J Gen Virol 85, 1843–1852.[CrossRef]
    [Google Scholar]
  41. Reiner, A., Yekutieli, D. & Benjamini, Y. ( 2003; ). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375.[CrossRef]
    [Google Scholar]
  42. Rimstad, E., Reubel, G. H., Dean, G. A., Higgins, J. & Pedersen, N. C. ( 1995; ). Cloning, expression and characterization of biologically active feline tumour necrosis factor-alpha. Vet Immunol Immunopathol 45, 297–310.[CrossRef]
    [Google Scholar]
  43. Ritchey, J. W., Levy, J. K., Bliss, S. K., Tompkins, W. A. F. & Tompkins, M. B. ( 2001; ). Constitutive expression of types 1 and 2 cytokines by alveolar macrophages from feline immunodeficiency virus-infected cats. Vet Immunol Immunopathol 79, 83–100.[CrossRef]
    [Google Scholar]
  44. Robert, J. ( 2003; ). Evolution of heat shock protein and immunity. Dev Comp Immunol 27, 449–464.[CrossRef]
    [Google Scholar]
  45. Rogers, A. B., Mathiason, C. K. & Hoover, E. A. ( 2002; ). Immunohistochemical localization of feline immunodeficiency virus using native species antibodies. Am J Pathol 161, 1143–1151.[CrossRef]
    [Google Scholar]
  46. Rohde, L. H., Julian, J., Babaknia, A. & Carson, D. D. ( 1996; ). Cell surface expression of HIP, a novel heparin/heparan sulfate binding protein, of human uterine epithelial cells and cell lines. J Biol Chem 271, 11824–11830.[CrossRef]
    [Google Scholar]
  47. Rojas, O. L., González, A. M., González, R., Pérez-Schael, I., Greenberg, H. B., Franco, M. A. & Angel, J. ( 2003; ). Human rotavirus specific T cells: quantification by ELISPOT and expression of homing receptors on CD4+ T cells. Virology 314, 671–679.[CrossRef]
    [Google Scholar]
  48. Sagara, Y., Ishida, C., Inoue, Y., Shiraki, H. & Maeda, Y. ( 1998; ). 71-Kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 72, 535–541.
    [Google Scholar]
  49. Schijns, V. E., Wierda, C. M., Vahlenkamp, T. W. & Horzinek, M. C. ( 1997; ). Molecular cloning of cat interleukin-12. Immunogenetics 45, 462–463.[CrossRef]
    [Google Scholar]
  50. Shimojima, M., Miyazawa, T., Ikeda, Y., McMonagle, E. L., Haining, H., Akashi, H., Takeuchi, Y., Hosie, M. J. & Willett, B. J. ( 2004; ). Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 303, 1192–1195.[CrossRef]
    [Google Scholar]
  51. Sparger, E. E., Beebe, A. M., Dua, N., Himathongkam, S., Elder, J. H., Torten, M. & Higgins, J. ( 1994; ). Infection of cats with molecularly cloned and biological isolates of the feline immunodeficiency virus. Virology 205, 546–553.[CrossRef]
    [Google Scholar]
  52. Stevenson, M. ( 2003; ). HIV-1 pathogenesis. Nat Med 9, 853–860.[CrossRef]
    [Google Scholar]
  53. Thomas, J. W., Touchman, J. W., Blakesley, R. W. & 68 other authors ( 2003; ). Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424, 788–793.[CrossRef]
    [Google Scholar]
  54. Thompson, F. J., Elder, J. & Neil, J. C. ( 1994; ). Cis- and trans-regulation of feline immunodeficiency virus: identification of functional binding sites in the long terminal repeat. J Gen Virol 75, 545–554.[CrossRef]
    [Google Scholar]
  55. Tomonaga, K., Shin, Y.-S., Fukasawa, M., Miyazawa, T., Adachi, A. & Mikami, T. ( 1993; ). Feline immunodeficiency virus gene expression: analysis of the RNA splicing pattern and the monocistronic rev mRNA. J Gen Virol 74, 2409–2417.[CrossRef]
    [Google Scholar]
  56. Triantafilou, K., Triantafilou, M. & Dedrick, R. L. ( 2001; ). A CD14-independent LPS receptor cluster. Nat Immunol 2, 338–345.[CrossRef]
    [Google Scholar]
  57. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  58. Vahlenkamp, T. W., Verschoor, E. J., Schuurman, N. N. M. P., van Vliet, A. L. W., Horzinek, M. C., Egberink, H. F. & de Ronde, A. ( 1997; ). A single amino acid substitution in the transmembrane envelope glycoprotein of feline immunodeficiency virus alters cellular tropism. J Virol 71, 7132–7135.
    [Google Scholar]
  59. van't Wout, A. B., Lehrman, G. K., Mikheeva, S. A., O'Keeffe, G. C., Katze, M. G., Bumgarner, R. E., Geiss, G. K. & Mullins, J. I. ( 2003; ). Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J Virol 77, 1392–1402.[CrossRef]
    [Google Scholar]
  60. Weiss, R. A. ( 2003; ). HIV and AIDS: looking ahead. Nat Med 9, 887–891.[CrossRef]
    [Google Scholar]
  61. Yamazaki, J., Hasebe, N., Nagafuchi, S., Baba, K., Tsujimoto, H., Kano, R. & Hasegawa, A. ( 2004; ). Expression of apoptosis-related gene mRNAs in feline T-cells infected with feline immunodeficiency virus (FIV). Vet Microbiol 101, 1–8.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80735-0
Loading
/content/journal/jgv/10.1099/vir.0.80735-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2239 – 2248

Differentially expressed genes in uninfected CRFK cells

Differentially expressed genes in FIV-infected CRFK cells, 1 h p.i.

Differentially expressed genes in FIV-infected CRFK cells, 2 h p.i.

Differentially expressed genes in FIV-infected CRFK cells, 4 h p.i.

Differentially expressed genes in FIV-infected CRFK cells, 24 and 48 h p.i.

Differentially expressed genes in FIV-infected lymphocytes, 1 h p.i.

Differentially expressed genes in FIV-infected lymphocytes, 2 h p.i.

Differentially expressed genes in FIV-infected lymphocytes, 4 h p.i.

Differentially expressed genes in FIV-infected lymphocytes, 24 h p.i.

[Single PDF file](328 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error