1887

Abstract

Foot-and-mouth disease viruses (FMDVs) target epithelial cells via integrin receptors, but can acquire the capacity to bind cell-surface heparan sulphate (or alternative receptors) on passage in cell culture. Vaccine viruses must be propagated in cell culture and, hence, some rationale for the selection of variants in this process is important. Crystal structures are available for type O, A and C viruses and also for a complex of type O strain OBFS with heparin. The structure of FMDV A10 (a cell culture-adapted strain) complexed with heparin has now been determined. This virus has an RGSD motif in place of the otherwise conserved RGD integrin-binding motif and the potential to bind heparan sulphate (suggested by sequence analyses). FMDV A10 was closely similar in structure to other serotypes, deviating most in antigenic sites. The VP1 GH loop comprising the integrin-binding motif was disordered. Heparin bound at a similar site and in a similar conformation to that seen in the analogous complex with OBFS, although the binding had a lower affinity and was more ionic.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80730-0
2005-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/7/vir861909.html?itemId=/content/journal/jgv/10.1099/vir.0.80730-0&mimeType=html&fmt=ahah

References

  1. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. ( 1989; ). The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337, 709–716.[CrossRef]
    [Google Scholar]
  2. Baranowski, E., Sevilla, N., Verdaguer, N., Ruiz-Jarabo, C. M., Beck, E. & Domingo, E. ( 1998; ). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol 72, 6362–6372.
    [Google Scholar]
  3. Baranowski, E., Ruiz-Jarabo, C. M., Sevilla, N., Andreu, D., Beck, E. & Domingo, E. ( 2000; ). Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74, 1641–1647.[CrossRef]
    [Google Scholar]
  4. Baxt, B., Vakharia, V., Moore, D. M., Franke, A. J. & Morgan, D. O. ( 1989; ). Analysis of neutralizing antigenic sites on the surface of type A12 foot-and-mouth disease virus. J Virol 63, 2143–2151.
    [Google Scholar]
  5. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. ( 2000; ). The Protein Data Bank. Nucleic Acids Res 28, 235–242.[CrossRef]
    [Google Scholar]
  6. Bernard, K. A., Klimstra, W. B. & Johnston, R. E. ( 2000; ). Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276, 93–103.[CrossRef]
    [Google Scholar]
  7. Bernfield, M., Götte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J. & Zako, M. ( 1999; ). Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729–777.[CrossRef]
    [Google Scholar]
  8. Boothroyd, J. C., Harris, T. J. R., Rowlands, D. J. & Lowe, P. A. ( 1982; ). The nucleotide sequence of cDNA coding for the structural proteins of foot-and-mouth disease virus. Gene 17, 153–161.[CrossRef]
    [Google Scholar]
  9. Brunger, A. T. ( 1992; ). xplor Version 3.1. New Haven, CT: Yale University Press.
  10. Byrnes, A. P. & Griffin, D. E. ( 2000; ). Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 74, 644–651.[CrossRef]
    [Google Scholar]
  11. Cardin, A. D. & Weintraub, H. J. ( 1989; ). Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21–32.[CrossRef]
    [Google Scholar]
  12. Collaborative Computational Project, Number 4 ( 1994; ). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760–763.[CrossRef]
    [Google Scholar]
  13. Crowther, J. R., Farias, S., Carpenter, W. C. & Samuel, A. R. ( 1993; ). Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol 74, 1547–1553.[CrossRef]
    [Google Scholar]
  14. Curry, S., Abu-Ghazaleh, R., Blakemore, W. & 7 other authors ( 1992; ). Crystallization and preliminary X-ray analysis of three serotypes of foot-and-mouth disease virus. J Mol Biol 228, 1263–1268.[CrossRef]
    [Google Scholar]
  15. Curry, S., Fry, E., Blakemore, W. & 7 other authors ( 1996; ). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure 4, 135–145.[CrossRef]
    [Google Scholar]
  16. Escribano-Romero, E., Jimenez-Clavero, M. A., Gomes, P., García-Ranea, J. A. & Ley, V. ( 2004; ). Heparan sulphate mediates swine vesicular disease virus attachment to the host cell. J Gen Virol 85, 653–663.[CrossRef]
    [Google Scholar]
  17. Esko, J. D., Weinke, J. L., Taylor, W. H., Ekborg, G., Rodén, L., Anantharamaiah, G. & Gawish, A. ( 1987; ). Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J Biol Chem 262, 12189–12195.
    [Google Scholar]
  18. Esnouf, R. M. ( 1997; ). An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model 15, 132–134.[CrossRef]
    [Google Scholar]
  19. Esnouf, R. M. ( 1999; ). Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr 55, 938–940.[CrossRef]
    [Google Scholar]
  20. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J. & Rees, D. C. ( 1996; ). Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120.[CrossRef]
    [Google Scholar]
  21. Filman, D. J., Syed, R., Chow, M., Macadam, A. J., Minor, P. D. & Hogle, J. M. ( 1989; ). Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8, 1567–1579.
    [Google Scholar]
  22. Fox, G., Parry, N. R., Barnett, P. V., McGinn, B., Rowlands, D. J. & Brown, F. ( 1989; ). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol 70, 625–637.[CrossRef]
    [Google Scholar]
  23. Fry, E., Acharya, R. & Stuart, D. ( 1993; ). Methods used in the structure determination of foot-and-mouth disease virus. Acta Crystallogr A 49, 45–55.[CrossRef]
    [Google Scholar]
  24. Fry, E. E., Lea, S. M., Jackson, T. & 7 other authors ( 1999; ). The structure and function of a foot-and-mouth disease virus–oligosaccharide receptor complex. EMBO J 18, 543–554.[CrossRef]
    [Google Scholar]
  25. Ganesh, V. K., Smith, S. A., Kotwal, G. J. & Murthy, K. H. M. ( 2004; ). Structure of vaccinia complement protein in complex with heparin and potential implications for complement regulation. Proc Natl Acad Sci U S A 101, 8924–8929.[CrossRef]
    [Google Scholar]
  26. Goodfellow, I. G., Sioofy, A. B., Powell, R. M. & Evans, D. J. ( 2001; ). Echoviruses bind heparan sulfate at the cell surface. J Virol 75, 4918–4921.[CrossRef]
    [Google Scholar]
  27. Harlos, K. ( 1992; ). Micro-bridges for sitting-drop crystallizations. J Appl Crystallogr 25, 536–538.
    [Google Scholar]
  28. Jackson, T., Ellard, F. M., Abu Ghazaleh, R., Brookes, S. M., Blakemore, W. E., Corteyn, A. H., Stuart, D. I., Newman, J. W. I. & King, A. M. Q. ( 1996; ). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70, 5282–5287.
    [Google Scholar]
  29. Jackson, T., Sharma, A., Abu Ghazaleh, R., Blakemore, W. E., Ellard, F. M., Simmons, D. L., Newman, J. W. I., Stuart, D. I. & King, A. M. Q. ( 1997; ). Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin αvβ3 in vitro. J Virol 71, 8357–8361.
    [Google Scholar]
  30. Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. & King, A. M. Q. ( 2000; ). The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J Virol 74, 4949–4956.[CrossRef]
    [Google Scholar]
  31. Jackson, T., Mould, A. P., Sheppard, D. & King, A. M. Q. ( 2002; ). Integrin αvβ1 is a receptor for foot-and-mouth disease virus. J Virol 76, 935–941.[CrossRef]
    [Google Scholar]
  32. Jackson, T., King, A. M. Q., Stuart, D. I. & Fry, E. ( 2003; ). Structure and receptor binding. Virus Res 91, 33–46.[CrossRef]
    [Google Scholar]
  33. Jackson, T., Clark, S., Berryman, S., Burman, A., Cambier, S., Mu, D., Nishimura, S. & King, A. M. Q. ( 2004; ). Integrin αvβ8 functions as a receptor for foot-and-mouth disease virus: role of the β-chain cytodomain in integrin-mediated infection. J Virol 78, 4533–4540.[CrossRef]
    [Google Scholar]
  34. Jones, T. A. ( 1985; ). Interactive computer graphics: frodo. Methods Enzymol 115, 157–171.
    [Google Scholar]
  35. Kim, S. S., Smith, T. J., Chapman, M. S., Rossmann, M. C., Pevear, D. C., Dutko, F. J., Felock, P. J., Diana, G. D. & McKinlay, M. A. ( 1989; ). Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210, 91–111.[CrossRef]
    [Google Scholar]
  36. Kitson, J. D. A., McCahon, D. & Belsham, G. J. ( 1990; ). Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179, 26–34.[CrossRef]
    [Google Scholar]
  37. Klimstra, W. B., Ryman, K. D. & Johnston, R. E. ( 1998; ). Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72, 7357–7366.
    [Google Scholar]
  38. Kraulis, P. J. ( 1991; ). molscript : a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24, 946–950.[CrossRef]
    [Google Scholar]
  39. Lea, S., Hernandez, J., Blakemore, W. & 9 other authors ( 1994; ). The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2, 123–139.[CrossRef]
    [Google Scholar]
  40. Lea, S., Abu-Ghazaleh, R., Blakemore, W. & 7 other authors ( 1995; ). Structural comparison of two strains of foot-and-mouth disease virus subtype O1 and a laboratory antigenic variant, G67. Structure 3, 571–580.[CrossRef]
    [Google Scholar]
  41. Lee, E. & Lobigs, M. ( 2002; ). Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76, 4901–4911.[CrossRef]
    [Google Scholar]
  42. Logan, D., Abu-Ghazaleh, R., Blakemore, W. & 10 other authors ( 1993; ). Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362, 566–568.[CrossRef]
    [Google Scholar]
  43. Mandl, C. W., Kroschewski, H., Allison, S. L., Kofler, R., Holzmann, H., Meixner, T. & Heinz, F. X. ( 2001; ). Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75, 5627–5637.[CrossRef]
    [Google Scholar]
  44. Mason, P. W., Baxt, B., Brown, F., Harber, J., Murdin, A. & Wimmer, E. ( 1993; ). Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192, 568–577.[CrossRef]
    [Google Scholar]
  45. Merritt, E. A. & Murphy, M. E. P. ( 1994; ). Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr 50, 869–873.[CrossRef]
    [Google Scholar]
  46. Mulloy, B. & Linhardt, R. J. ( 2001; ). Order out of complexity – protein structures that interact with heparin. Curr Opin Struct Biol 11, 623–628.[CrossRef]
    [Google Scholar]
  47. Neff, S., Sá-Carvalho, D., Rieder, E., Mason, P. W., Blystone, S. D., Brown, E. J. & Baxt, B. ( 1998; ). Foot-and-mouth disease virus virulent for cattle utilizes the integrin α v β 3 as its receptor. J Virol 72, 3587–3594.
    [Google Scholar]
  48. Nicholls, A., Sharp, K. A. & Honig, B. ( 1991; ). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296.[CrossRef]
    [Google Scholar]
  49. Otwinoski, Z. ( 1993; ). Oscillation data reduction program. In Proceedings of the CCP4 Study Weekend: Data Collection and Processing, 29–30 January, 1993, pp. 56–62. Warrington, UK: Daresbury Laboratory, SERC.
  50. Parry, N., Fox, G., Rowlands, D., Brown, F., Fry, E., Acharya, R., Logan, D. & Stuart, D. ( 1990; ). Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature 347, 569–572.[CrossRef]
    [Google Scholar]
  51. Reddi, H. V., Kumar, A. S. M., Kung, A. Y., Kallio, P. D., Schlitt, B. P. & Lipton, H. L. ( 2004; ). Heparan sulfate-independent infection attenuates high-neurovirulence GDVII virus-induced encephalitis. J Virol 78, 8909–8916.[CrossRef]
    [Google Scholar]
  52. Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A. & Mason, P. W. ( 1997; ). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71, 5115–5123.
    [Google Scholar]
  53. Spillmann, D. ( 2001; ). Heparan sulfate: anchor for viral intruders? Biochimie 83, 811–817.[CrossRef]
    [Google Scholar]
  54. Stehle, T., Yan, Y., Benjamin, T. L. & Harrison, S. C. ( 1994; ). Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163.[CrossRef]
    [Google Scholar]
  55. Strohmaier, K., Franze, R. & Adam, K.-H. ( 1982; ). Location and characterization of the antigenic portion of the FMDV immunizing protein. J Gen Virol 59, 295–306.[CrossRef]
    [Google Scholar]
  56. Stuart, D. I., Levine, M., Muirhead, H. & Stammers, D. K. ( 1979; ). Crystal structure of cat muscle pyruvate kinase at a resolution of 2·6 Å. J Mol Biol 134, 109–142.[CrossRef]
    [Google Scholar]
  57. Thomas, A. A. M., Woortmeijer, R. J., Puijk, W. & Barteling, S. J. ( 1988; ). Antigenic sites on foot-and-mouth disease virus type A10. J Virol 62, 2782–2789.
    [Google Scholar]
  58. Verdaguer, N., Mateu, M. G., Andreu, D., Giralt, E., Domingo, E. & Fita, I. ( 1995; ). Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J 14, 1690–1696.
    [Google Scholar]
  59. Verdaguer, N., Fita, I., Domingo, E. & Mateu, M. G. ( 1997; ). Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding. J Virol 71, 9813–9816.
    [Google Scholar]
  60. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. ( 1995; ). ligplot: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8, 127–134.[CrossRef]
    [Google Scholar]
  61. Zautner, A. E., Körner, U., Henke, A., Badorff, C. & Schmidtke, M. ( 2003; ). Heparan sulfates and coxsackievirus-adenovirus receptor: each one mediates coxsackievirus B3 PD infection. J Virol 77, 10071–10077.[CrossRef]
    [Google Scholar]
  62. Zhao, Q., Pacheco, J. M. & Mason, P. W. ( 2003; ). Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J Virol 77, 3269–3280.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80730-0
Loading
/content/journal/jgv/10.1099/vir.0.80730-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error