1887

Abstract

Translation of the hepatitis C virus (HCV) polyprotein is mediated by an internal ribosome entry site (IRES) that is located mainly within the 5′ non-translated region of the viral genome. In this study, the effect of the HCV non-structural 5A (NS5A) protein on the HCV IRES-dependent translation was investigated by using a transient transfection system. Three different cell lines (HepG2, WRL-68 and BHK-21) were co-transfected with a plasmid vector containing a bicistronic transcript carrying the chloramphenicol acetyltransferase (CAT) and the firefly luciferase genes separated by the HCV IRES sequences, and an expression vector producing the NS5A protein. Here, it was shown that the HCV NS5A protein inhibited HCV IRES-dependent translation in a dose-dependent manner. In contrast, NS5A had no detectable effect on cap-dependent translation of the upstream gene (CAT) nor on translation from another viral IRES. Further analysis using deleted forms of the NS5A protein revealed that a region of about 120 aa located just upstream of the nuclear localization signal of the protein is critical for this suppression. Overall, these results suggest that HCV NS5A protein negatively modulates the HCV IRES activity in a specific manner.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80728-0
2005-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir861015.html?itemId=/content/journal/jgv/10.1099/vir.0.80728-0&mimeType=html&fmt=ahah

References

  1. Ali, N. & Siddiqui, A. ( 1995; ). Interaction of polypyrimidine tract-binding protein with the 5′ noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 69, 6367–6375.
    [Google Scholar]
  2. Alter, M. J. ( 1997; ). Epidemiology of hepatitis C. Hepatology 26, S62–65.[CrossRef]
    [Google Scholar]
  3. Bartenschlager, R. & Lohmann, V. ( 2000; ). Replication of hepatitis C virus. J Gen Virol 81, 1631–1648.
    [Google Scholar]
  4. Bartenschlager, R. & Lohmann, V. ( 2001; ). Novel cell culture systems for the hepatitis C virus. Antiviral Res 52, 1–17.[CrossRef]
    [Google Scholar]
  5. Barton, D. J., Morasco, B. J. & Flanegan, J. B. ( 1999; ). Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J Virol 73, 10104–10112.
    [Google Scholar]
  6. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. ( 2000; ). Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974.[CrossRef]
    [Google Scholar]
  7. Blight, K. J., McKeating, J. A., Marcotrigiano, J. & Rice, C. M. ( 2003; ). Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 77, 3181–3190.[CrossRef]
    [Google Scholar]
  8. Dumas, E., Staedel, C., Colombat, M., Reigadas, S., Chabas, S., Astier-Gin, T., Cahour, A., Litvak, S. & Ventura, M. ( 2003; ). A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res 31, 1275–1281.[CrossRef]
    [Google Scholar]
  9. Elazar, M., Cheong, K. H., Liu, P., Greenberg, H. B., Rice, C. M. & Glenn, J. S. ( 2003; ). Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. J Virol 77, 6055–6061.[CrossRef]
    [Google Scholar]
  10. Eustice, D. C. & Wilhelm, J. M. ( 1984; ). Mechanisms of action of aminoglycoside antibiotics in eucaryotic protein synthesis. Antimicrob Agents Chemother 26, 53–60.[CrossRef]
    [Google Scholar]
  11. Fukushi, S., Okada, M., Kageyama, T., Hoshino, F. B. & Katayama, K. ( 1999; ). Specific interaction of a 25-kilodalton cellular protein, a 40S ribosomal subunit protein, with the internal ribosome entry site of hepatitis C virus genome. Virus Genes 19, 153–161.[CrossRef]
    [Google Scholar]
  12. Fukushi, S., Okada, M., Kageyama, T., Hoshino, F. B., Nagai, K. & Katayama, K. ( 2001a; ). Interaction of poly(rC)-binding protein 2 with the 5′-terminal stem loop of the hepatitis C-virus genome. Virus Res 73, 67–79.[CrossRef]
    [Google Scholar]
  13. Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B. & Katayama, K. ( 2001b; ). Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J Biol Chem 276, 20824–20826.[CrossRef]
    [Google Scholar]
  14. Gale, M., Jr & Beard, M. R. ( 2001; ). Molecular clones of hepatitis C virus: applications to animal models. ILAR J 42, 139–151.[CrossRef]
    [Google Scholar]
  15. Gale, M. J., Jr, Korth, M. J., Tang, N. M., Tan, S. L., Hopkins, D. A., Dever, T. E., Polyak, S. J., Gretch, D. R. & Katze, M. G. ( 1997; ). Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230, 217–227.[CrossRef]
    [Google Scholar]
  16. Gamarnik, A. V. & Andino, R. ( 1998; ). Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12, 2293–2304.[CrossRef]
    [Google Scholar]
  17. Goh, P. Y., Tan, Y. J., Lim, S. P., Lim, S. G., Tan, Y. H. & Hong, W. J. ( 2001; ). The hepatitis C virus core protein interacts with NS5A and activates its caspase-mediated proteolytic cleavage. Virology 290, 224–236.[CrossRef]
    [Google Scholar]
  18. Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y. & Jang, S. K. ( 1998; ). Heterogeneous nuclear ribonucleoprotein L interacts with the 3′ border of the internal ribosomal entry site of hepatitis C virus. J Virol 72, 8782–8788.
    [Google Scholar]
  19. He, Y., Yan, W., Coito, C., Li, Y., Gale, M., Jr & Katze, M. G. ( 2003; ). The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 84, 535–543.[CrossRef]
    [Google Scholar]
  20. Hellen, C. U. & Pestova, T. V. ( 1999; ). Translation of hepatitis C virus RNA. J Viral Hepat 6, 79–87.[CrossRef]
    [Google Scholar]
  21. Hirota, M., Satoh, S., Asabe, S., Kohara, M., Tsukiyama-Kohara, K., Kato, N., Hijikata, M. & Shimotohno, K. ( 1999; ). Phosphorylation of nonstructural 5A protein of hepatitis C virus: HCV group-specific hyperphosphorylation. Virology 257, 130–137.[CrossRef]
    [Google Scholar]
  22. Honda, M., Brown, E. A. & Lemon, S. M. ( 1996; ). Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968.
    [Google Scholar]
  23. Honda, M., Kaneko, S., Matsushita, E., Kobayashi, K., Abell, G. A. & Lemon, S. M. ( 2000; ). Cell cycle regulation of hepatitis C virus internal ribosomal entry site-directed translation. Gastroenterology 118, 152–162.[CrossRef]
    [Google Scholar]
  24. Hoofnagle, J. H. ( 1997; ). Hepatitis C: the clinical spectrum of disease. Hepatology 26, S15–20.[CrossRef]
    [Google Scholar]
  25. Ide, Y., Zhang, L., Chen, M., Inchauspe, G., Bahl, C., Sasaguri, Y. & Padmanabhan, R. ( 1996; ). Characterization of the nuclear localization signal and subcellular distribution of hepatitis C virus nonstructural protein NS5A. Gene 182, 203–211.[CrossRef]
    [Google Scholar]
  26. Imbert, I., Dimitrova, M., Kien, F., Kieny, M. P. & Schuster, C. ( 2003; ). Hepatitis C virus IRES efficiency is unaffected by the genomic RNA 3′NTR even in the presence of viral structural or non-structural proteins. J Gen Virol 84, 1549–1557.[CrossRef]
    [Google Scholar]
  27. Ito, T. & Lai, M. M. ( 1999; ). An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3′-untranslated sequence. Virology 254, 288–296.[CrossRef]
    [Google Scholar]
  28. Ito, T., Tahara, S. M. & Lai, M. M. ( 1998; ). The 3′-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72, 8789–8796.
    [Google Scholar]
  29. Izumi, R. E., Das, S., Barat, B., Raychaudhuri, S. & Dasgupta, A. ( 2004; ). A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation. J Virol 78, 3763–3776.[CrossRef]
    [Google Scholar]
  30. Kalamvoki, M. & Mavromara, P. ( 2004; ). Calcium-dependent calpain proteases are implicated in processing of the hepatitis C virus NS5A protein. J Virol 78, 11865–11878.[CrossRef]
    [Google Scholar]
  31. Kalamvoki, M., Miriagou, V., Hadziyannis, A., Georgopoulou, U., Varaklioti, A., Hadziyannis, S. & Mavromara, P. ( 2002; ). Expression of immunoreactive forms of the hepatitis C NS5A protein in E. coli and their use for diagnostic assays. Arch Virol 147, 1733–1745.[CrossRef]
    [Google Scholar]
  32. Kalliampakou, K. I., Psaridi-Linardaki, L. & Mavromara, P. ( 2002; ). Mutational analysis of the apical region of domain II of the HCV IRES. FEBS Lett 511, 79–84.[CrossRef]
    [Google Scholar]
  33. Kato, J., Kato, N., Yoshida, H., Ono-Nita, S. K., Shiratori, Y. & Omata, M. ( 2002; ). Hepatitis C virus NS4A and NS4B proteins suppress translation in vivo. J Med Virol 66, 187–199.[CrossRef]
    [Google Scholar]
  34. Kim, Y. K., Lee, S. H., Kim, C. S., Seol, S. K. & Jang, S. K. ( 2003; ). Long-range RNA-RNA interaction between the 5′ nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation. RNA 9, 599–606.[CrossRef]
    [Google Scholar]
  35. Krieger, N., Lohmann, V. & Bartenschlager, R. ( 2001; ). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75, 4614–4624.[CrossRef]
    [Google Scholar]
  36. Li, D., Takyar, S. T., Lott, W. B. & Gowans, E. J. ( 2003; ). Amino acids 1-20 of the hepatitis C virus (HCV) core protein specifically inhibit HCV IRES-dependent translation in HepG2 cells, and inhibit both HCV IRES- and cap-dependent translation in HuH7 and CV-1 cells. J Gen Virol 84, 815–825.[CrossRef]
    [Google Scholar]
  37. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  38. Lohmann, V., Korner, F., Dobierzewska, A. & Bartenschlager, R. ( 2001; ). Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75, 1437–1449.[CrossRef]
    [Google Scholar]
  39. Macdonald, A. & Harris, M. ( 2004; ). Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85, 2485–2502.[CrossRef]
    [Google Scholar]
  40. Martínez-Salas, E., Ramos, R., Lafuente, E. & López de Quinto, S. ( 2001; ). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82, 973–984.
    [Google Scholar]
  41. Moradpour, D. & Blum, H. E. ( 1999; ). Current and evolving therapies for hepatitis C. Eur J Gastroenterol Hepatol 11, 1199–1202.[CrossRef]
    [Google Scholar]
  42. Murakami, K., Abe, M., Kageyama, T., Kamoshita, N. & Nomoto, A. ( 2001; ). Down-regulation of translation driven by hepatitis C virus internal ribosomal entry site by the 3′ untranslated region of RNA. Arch Virol 146, 729–741.[CrossRef]
    [Google Scholar]
  43. Pellerin, M., Lopez-Aguirre, Y., Penin, F., Dhumeaux, D. & Pawlotsky, J. M. ( 2004; ). Hepatitis C virus quasispecies variability modulates nonstructural protein 5A transcriptional activation, pointing to cellular compartmentalization of virus-host interactions. J Virol 78, 4617–4627.[CrossRef]
    [Google Scholar]
  44. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. ( 1998; ). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67–83.[CrossRef]
    [Google Scholar]
  45. Pudi, R., Abhiman, S., Srinivasan, N. & Das, S. ( 2003; ). Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J Biol Chem 278, 12231–12240.[CrossRef]
    [Google Scholar]
  46. Reed, K. E. & Rice, C. M. ( 2000; ). Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol 242, 55–84.
    [Google Scholar]
  47. Reed, K. E., Xu, J. & Rice, C. M. ( 1997; ). Phosphorylation of the hepatitis C virus NS5A protein in vitro and in vivo: properties of the NS5A-associated kinase. J Virol 71, 7187–7197.
    [Google Scholar]
  48. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J. & Jackson, R. J. ( 1995; ). Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14, 6010–6020.
    [Google Scholar]
  49. Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Internal ribosome entry site-mediated translation in hepatitis C virus replication. Curr Top Microbiol Immunol 242, 85–116.
    [Google Scholar]
  50. Rijnbrand, R., Bredenbeek, P., van der Straaten, T., Whetter, L., Inchauspe, G., Lemon, S. & Spaan, W. ( 1995; ). Almost the entire 5′ non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365, 115–119.[CrossRef]
    [Google Scholar]
  51. Satoh, S., Hirota, M., Noguchi, T., Hijikata, M., Handa, H. & Shimotohno, K. ( 2000; ). Cleavage of hepatitis C virus nonstructural protein 5A by a caspase-like protease(s) in mammalian cells. Virology 270, 476–487.[CrossRef]
    [Google Scholar]
  52. Shimoike, T., Mimori, S., Tani, H., Matsuura, Y. & Miyamura, T. ( 1999; ). Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73, 9718–9725.
    [Google Scholar]
  53. Svitkin, Y. V. & Sonenberg, N. ( 2003; ). Cell-free synthesis of encephalomyocarditis virus. J Virol 77, 6551–6555.[CrossRef]
    [Google Scholar]
  54. Tan, S. L. & Katze, M. G. ( 2001; ). How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology 284, 1–12.[CrossRef]
    [Google Scholar]
  55. Tanji, Y., Kaneko, T., Satoh, S. & Shimotohno, K. ( 1995; ). Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J Virol 69, 3980–3986.
    [Google Scholar]
  56. Tellinghuisen, T. L. & Rice, C. M. ( 2002; ). Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol 5, 419–427.[CrossRef]
    [Google Scholar]
  57. Varaklioti, A., Vassilaki, N., Georgopoulou, U. & Mavromara, P. ( 2002; ). Alternate translation occurs within the core coding region of the hepatitis C viral genome. J Biol Chem 277, 17713–17721.[CrossRef]
    [Google Scholar]
  58. Walewski, J. L., Keller, T. R., Stump, D. D. & Branch, A. D. ( 2001; ). Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7, 710–721.[CrossRef]
    [Google Scholar]
  59. Wang, T. H., Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Core protein-coding sequence, but not core protein, modulates the efficiency of cap-independent translation directed by the internal ribosome entry site of hepatitis C virus. J Virol 74, 11347–11358.[CrossRef]
    [Google Scholar]
  60. WHO ( 1999; ). Global surveillance and control of hepatitis C. J Viral Hepat 6, 35–47.[CrossRef]
    [Google Scholar]
  61. Xu, Z., Choi, J., Yen, T. S., Lu, W., Strohecker, A., Govindarajan, S., Chien, D., Selby, M. J. & Ou, J. ( 2001; ). Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J 20, 3840–3848.[CrossRef]
    [Google Scholar]
  62. Zhang, J., Yamada, O., Yoshida, H., Iwai, T. & Araki, H. ( 2002; ). Autogenous translational inhibition of core protein: implication for switch from translation to RNA replication in hepatitis C virus. Virology 293, 141–150.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80728-0
Loading
/content/journal/jgv/10.1099/vir.0.80728-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error