1887

Abstract

Throughout North America, rabies virus (RV) is endemic in bats. Distinct RV variants exist that are closely associated with infection of individual host species, such that there is little or no sustained spillover infection away from the primary host. Using Bayesian methodology, nucleotide substitution rates were estimated from alignments of partial nucleoprotein (N) gene sequences of nine distinct bat RV variants from North America. Substitution rates ranged from 2·32×10 to 1·38×10 substitutions per site per year. A maximum-likelihood (ML) molecular clock model was rejected for only two of the nine datasets. In addition, using sequences from bat RV variants across the Americas, the evolutionary rate for the complete N gene was estimated to be 2·32×10. This rate was used to scale trees using Bayesian and ML methods, and the time of the most recent common ancestor for current bat RV variant diversity in the Americas was estimated to be 1660 (range 1267–1782) and 1651 (range 1254–1773), respectively. Our reconstructions suggest that RV variants currently associated with infection of bats from Latin America ( and ) share the earliest common ancestor with the progenitor RV. In addition, from the ML tree, times were estimated for the emergence of the three major lineages responsible for bat rabies cases in North America. Adaptation to infection of the colonial bat species analysed (, spp.) appears to have occurred much quicker than for the solitary species analysed (, , , ), suggesting that the process of virus adaptation may be dependent on host biology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80710-0
2005-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861467.html?itemId=/content/journal/jgv/10.1099/vir.0.80710-0&mimeType=html&fmt=ahah

References

  1. Awadalla, P. ( 2003; ). The evolutionary genomics of pathogen recombination. Nat Rev Genet 4, 50–60.[CrossRef]
    [Google Scholar]
  2. Badrane, H. & Tordo, N. ( 2001; ). Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 75, 8096–8104.[CrossRef]
    [Google Scholar]
  3. Baer, G. M. & Smith, J. S. ( 1991; ). Rabies in nonhematophagous bats. In The Natural History of Rabies, 2nd edn, pp. 341–366. Edited by G. M. Baer. Boca Raton, FL: CRC Press.
  4. Baer, G. M., Neville, J. & Turner, G. S. ( 1996; ). Rabbis and Rabies. Mexico City: de Imprenta Marsella.
  5. Biek, R., Rodrigo, A. G., Holley, D., Drummond, A., Anderson, C. R., Jr, Ross, H. A. & Poss, M. ( 2003; ). Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J Virol 77, 9578–9589.[CrossRef]
    [Google Scholar]
  6. Constantine, D. G. ( 1979; ). An updated list of rabies-infected bats in North America. J Wildl Dis 15, 347–349.[CrossRef]
    [Google Scholar]
  7. Constantine, D. G. ( 2003; ). Geographic translocation of bats: known and potential problems. Emerg Infect Dis 9, 17–21.[CrossRef]
    [Google Scholar]
  8. Crandell, R. A. ( 1975; ). Arctic fox rabies. In The Natural History of Rabies, 1st edn, pp. 23–40. Edited by G. M. Baer. New York: Academic Press.
  9. Delpietro, H. A. & Russo, R. G. ( 1996; ). Ecological and epidemiologic aspects of the attacks by vampire bats and paralytic rabies in Argentina and analysis of the proposals carried out for their control. Rev Sci Tech 15, 971–984.
    [Google Scholar]
  10. Domingo, E. & Holland, J. J. ( 1994; ). Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses, pp. 161–184. Edited by S. S. Morse. New York: Raven Press.
  11. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. ( 2002; ). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307–1320.
    [Google Scholar]
  12. Drummond, A., Pybus, O. G. & Rambaut, A. ( 2003; ). Inference of viral evolutionary rates from molecular sequences. Adv Parasitol 54, 331–358.
    [Google Scholar]
  13. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  14. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  15. Haydon, D. T., Bastos, A. D. S. & Awadalla, A. ( 2004; ). Low linkage disequilibrium indicative of recombination in foot-and-mouth disease virus gene sequence alignments. J Gen Virol 85, 1095–1110.[CrossRef]
    [Google Scholar]
  16. Holmes, E. C. ( 2003; ). Molecular clocks and the puzzle of RNA virus origins. J Virol 77, 3893–3897.[CrossRef]
    [Google Scholar]
  17. Holmes, E. C., Woelk, C. H., Kassis, R. & Bourhy, H. ( 2002; ). Genetic constraints and the adaptive evolution of rabies virus in nature. Virology 292, 247–257.[CrossRef]
    [Google Scholar]
  18. Hughes, G. J., Páez, A., Boshell, J. & Rupprecht, C. E. ( 2004; ). A phylogenetic reconstruction of the epidemiological history of canine rabies virus variants in Colombia. Infect Genet Evol 4, 45–51.[CrossRef]
    [Google Scholar]
  19. Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. ( 2002; ). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54, 156–165.[CrossRef]
    [Google Scholar]
  20. Kissi, B., Tordo, N. & Bourhy, H. ( 1995; ). Genetic polymorphism in the rabies virus nucleoprotein gene. Virology 209, 526–537.[CrossRef]
    [Google Scholar]
  21. Kissi, B., Badrane, H., Audry, L., Lavenu, A., Tordo, N., Brahimi, M. & Bourhy, H. ( 1999; ). Dynamics of rabies virus quasispecies during serial passage in heterologous hosts. J Gen Virol 80, 2041–2050.
    [Google Scholar]
  22. Krebs, J. W., Noll, H. R., Rupprecht, C. E. & Childs, J. E. ( 2002; ). Rabies surveillance in the United States during 2001. J Am Vet Med Assoc 221, 1690–1701.[CrossRef]
    [Google Scholar]
  23. Kuzmin, I. V., Botvinkin, A. D., McElhinney, L. M., Smith, J. S., Orciari, L. A., Hughes, G. J., Fooks, A. R. & Rupprecht, C. E. ( 2004; ). Molecular epidemiology of terrestrial rabies in the former Soviet Union. J Wildl Dis 40, 617–631.[CrossRef]
    [Google Scholar]
  24. Lemey, P., Pybus, O. G., Rambaut, A., Drummond, A. J., Robertson, D. L., Roques, P., Worobey, M. & Vandamme, A.-M. ( 2004; ). The molecular population genetics of HIV-1 group O. Genetics 167, 1059–1068.[CrossRef]
    [Google Scholar]
  25. McNab, B. K. ( 1973; ). Energetics and the distribution of vampires. J Mammal 15, 131–144.
    [Google Scholar]
  26. Messenger, S. L., Smith, J. S., Orciari, L. A., Yager, P. A. & Rupprecht, C. E. ( 2003; ). Emerging pattern of rabies deaths and increased viral infectivity. Emerg Infect Dis 9, 151–154.[CrossRef]
    [Google Scholar]
  27. Morimoto, K., Patel, M., Corisdeo, S., Hooper, D. C., Fu, Z. F., Rupprecht, C. E., Koprowski, H. & Dietzschold, B. ( 1996; ). Characterization of a unique variant of bat rabies virus responsible for newly emerging human cases in North America. Proc Natl Acad Sci U S A 93, 5653–5658.[CrossRef]
    [Google Scholar]
  28. Morimoto, K., Hooper, D. C., Carbaugh, H., Fu, Z. F., Koprowski, H. & Dietzchold, B. ( 1998; ). Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci U S A 95, 3152–3156.[CrossRef]
    [Google Scholar]
  29. Nadin-Davis, S. A., Huang, W., Armstrong, J., Casey, G. A., Bahloul, C., Tordo, N. & Wandeler, A. I. ( 2001; ). Antigenic and genetic divergence of rabies viruses from bat species indigenous to Canada. Virus Res 74, 139–156.[CrossRef]
    [Google Scholar]
  30. Rambaut, A. ( 2000; ). Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399.[CrossRef]
    [Google Scholar]
  31. Rambaut, A. & Grassly, N. C. ( 1997; ). Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci 13, 235–238.
    [Google Scholar]
  32. Ray, C. E., Linares, O. J. & Morgan, G. S. ( 1988; ). Paleontology. In Natural History of Vampire Bats, pp. 19–30. Edited by A. M. Greenhall & U. Schmidt. Boca Raton, FL: CRC Press.
  33. Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. ( 2003; ). DnaSp, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.[CrossRef]
    [Google Scholar]
  34. Rupprecht, C. E., Dietzschold, B., Wunner, W. H. & Koprowski, H. ( 1991; ). Antigenic relationships of lyssaviruses. In The Natural History of Rabies, 2nd edn, pp. 69–100. Edited by G. M. Baer. Boca Raton, FL: CRC Press.
  35. Scatterday, J. E. & Galton, M. M. ( 1954; ). Bat rabies in Florida. Vet Med 49, 133–135.
    [Google Scholar]
  36. Shope, R. ( 1975; ). Rabies virus antigenic relationships. In The Natural History of Rabies, 1st edn, pp. 141–152. Edited by G. M. Baer. New York: Academic Press.
  37. Simmonds, P. & Smith, D. B. ( 1999; ). Structural constraints on RNA virus evolution. J Virol 73, 5787–5794.
    [Google Scholar]
  38. Smith, J. S. ( 2002; ). Molecular epidemiology. In Rabies, pp. 79–111. Edited by A. C. Jackson & W. H. Wunner. New York: Academic Press.
  39. Smith, J. S. & Seidel, H. D. ( 1993; ). Rabies: a new look at an old disease. Prog Med Virol 40, 82–106.
    [Google Scholar]
  40. Tordo, N. & Kouknetzoff, A. ( 1993; ). The rabies virus genome: an overview. Onderstepoort J Vet Res 60, 263–269.
    [Google Scholar]
  41. Tordo, N., Poch, O., Ermine, A., Keith, G. & Rougeon, F. ( 1986; ). Walking along the rabies genome: is the large G-L intergenic region a remnant gene? Proc Natl Acad Sci USA 83, 3914–3918.[CrossRef]
    [Google Scholar]
  42. Twiddy, S. S., Holmes, E. C. & Rambaut, A. ( 2003; ). Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol 20, 122–129.[CrossRef]
    [Google Scholar]
  43. Woelk, C. H., Pybus, O. G., Jin, L., Brown, D. W. & Holmes, E. C. ( 2002; ). Increased positive selection in persistent (SSPE) versus acute measles virus infections. J Gen Virol 83, 1419–1430.
    [Google Scholar]
  44. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
  45. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A. M. ( 2000; ). Codon-substitution models for heterogeneous selection pressures at amino acid sites. Genetics 155, 431–449.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80710-0
Loading
/content/journal/jgv/10.1099/vir.0.80710-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error