1887

Abstract

Geminivirus infectivity is thought to depend on interactions between the virus replication-associated proteins Rep or RepA and host retinoblastoma-related proteins (pRBR), which control cell-cycle progression. It was determined that the substitution of two amino acids in the (MSV) RepA pRBR-interaction motif (LLCNE to LLCLK) abolished detectable RepA–pRBR interaction in yeast without abolishing infectivity in maize. Although the mutant virus was infectious in maize, it induced less severe symptoms than the wild-type virus. Sequence analysis of progeny viral DNA isolated from infected maize enabled detection of a high-frequency single-nucleotide reversion of C(601)A in the 3 nt mutated sequence of the Rep gene. Although it did not restore RepA–pRBR interaction in yeast, sequence-specific PCR showed that, in five out of eight plants, the C(601)A reversion appeared by day 10 post-inoculation. In all plants, the C(601)A revertant eventually completely replaced the original mutant population, indicating a high selection pressure for the single-nucleotide reversion. Apart from potentially revealing an alternative or possibly additional function for the stretch of DNA that encodes the apparently non-essential pRBR-interaction motif of MSV Rep, the consistent emergence and eventual dominance of the C(601)A revertant population might provide a useful tool for investigating aspects of MSV biology, such as replication, mutation and evolution rates, and complex population phenomena, such as competition between quasispecies and population turnover.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80694-0
2005-03-01
2024-11-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860803.html?itemId=/content/journal/jgv/10.1099/vir.0.80694-0&mimeType=html&fmt=ahah

References

  1. An G., Ebert P. R., Mitra A., Ha S. B. 1988; Binary vectors. In Plant Molecular Biology Manual pp  87–88 Edited by Gelvin S. B., Schilperoort R. A. Dordrecht: Kluwer;
    [Google Scholar]
  2. Arguello-Astorga G., Lopez-Ochoa L., Kong L.-J., Orozco B. M., Settlage S. B., Hanley-Bowdoin L. 2004; A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol 78:4817–4826 [CrossRef]
    [Google Scholar]
  3. Aronson M. N., Meyer A. D., Györgyey J., Katul L., Vetten H. J., Gronenborn B., Timchenko T. 2000; Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J Virol 74:2967–2972 [CrossRef]
    [Google Scholar]
  4. Castellano M. M., Sanz-Burgos A. P., Gutiérrez C. 1999; Initiation of DNA replication in a eukaryotic rolling-circle replicon: identification of multiple DNA-protein complexes at the geminivirus origin. J Mol Biol 290:639–652 [CrossRef]
    [Google Scholar]
  5. Christensen A. H., Quail P. H. 1996; Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218 [CrossRef]
    [Google Scholar]
  6. Collin S., Fernández-Lobato M., Gooding P. S., Mullineaux P. M., Fenoll C. 1996; The two nonstructural proteins from wheat dwarf virus involved in viral gene expression and replication are retinoblastoma-binding proteins. Virology 219:324–329 [CrossRef]
    [Google Scholar]
  7. Dahl M., Meskiene I., Bögre L., Ha D. T. C., Swoboda I., Hubmann R., Hirt H., Herberle-Bors E. 1995; The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle. Plant Cell 7:1847–1857
    [Google Scholar]
  8. de Jager S. M., Murray J. A. H. 1999; Retinoblastoma proteins in plants. Plant Mol Biol 41:295–299 [CrossRef]
    [Google Scholar]
  9. Dellaporta S. L., Wood J., Hicks J. B. 1983; A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21 [CrossRef]
    [Google Scholar]
  10. Dowdy S. F., Hinds P. W., Louie K., Reed S. I., Arnold A., Weinberg R. A. 1993; Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73:499–511 [CrossRef]
    [Google Scholar]
  11. Egelkrout E. M., Robertson D., Hanley-Bowdoin L. 2001; Proliferating cell nuclear antigen transcription is repressed through an E2F consensus element and activated by geminivirus infection in mature leaves. Plant Cell 13:1437–1452 [CrossRef]
    [Google Scholar]
  12. Egelkrout E. M., Mariconti L., Settlage S. B., Cella R., Robertson D., Hanley-Bowdoin L. 2002; Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development. Plant Cell 14:3225–3236 [CrossRef]
    [Google Scholar]
  13. Ewen M. E., Sluss H. K., Sherr C. J., Matsushime H., Kato J., Livingston D. M. 1993; Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73:487–497 [CrossRef]
    [Google Scholar]
  14. Fauquet C. M., Stanley J. 2003; Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol 142:165–189 [CrossRef]
    [Google Scholar]
  15. Forng R.-Y., Atreya C. D. 1999; Mutations in the retinoblastoma protein-binding LXCXE motif of rubella virus putative replicase affect virus replication. J Gen Virol 80:327–332
    [Google Scholar]
  16. Gietz R. D., Woods R. A. 1994; High efficiency transformation in yeast. In Molecular Genetics of Yeast: Practical Approaches pp  121–134 Edited by Johnston J. A. Oxford: Oxford University Press;
    [Google Scholar]
  17. Gordon-Kamm W., Dilkes B. P., Lowe K. 14 other authors 2002; Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci U S A 99:11975–11980 [CrossRef]
    [Google Scholar]
  18. Gutierrez C. 1999; Geminivirus DNA replication. Cell Mol Life Sci 56:313–329 [CrossRef]
    [Google Scholar]
  19. Gutierrez C. 2000; DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J 19:792–799 [CrossRef]
    [Google Scholar]
  20. Gutierrez C., Ramirez-Parra E., Mar Castellano M., Sanz-Burgos A. P., Luque A., Missich R. 2004; Geminivirus DNA replication and cell cycle interactions. Vet Microbiol 98:111–119 [CrossRef]
    [Google Scholar]
  21. Hanley-Bowdoin L., Settlage S. B., Orozco B. M., Nagar S., Robertson D. 2000; Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105–140
    [Google Scholar]
  22. Hanley-Bowdoin L., Settlage S. B., Robertson D. 2004; Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149–156 [CrossRef]
    [Google Scholar]
  23. Hofer J. M. I., Dekker E. L., Reynolds H. V., Woolston C. J., Cox B. S., Mullineaux P. M. 1992; Coordinate regulation of replication and virion sense gene expression in wheat dwarf virus. Plant Cell 4:213–223 [CrossRef]
    [Google Scholar]
  24. Horvath G. V., Pettko-Szandtner A., Nikovics K., Bilgin M., Boulton M., Davies J. W., Gutierrez C., Dudits D. 1998; Prediction of functional regions of the maize streak virus replication-associated proteins by protein-protein interaction analysis. Plant Mol Biol 38:699–712 [CrossRef]
    [Google Scholar]
  25. Jeske H., Lütgemeier M., Preiß W. 2001; DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158–6167 [CrossRef]
    [Google Scholar]
  26. Koncz C., Schell J. 1986; The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396 [CrossRef]
    [Google Scholar]
  27. Kong L.-J., Orozco B. M., Roe J. L. 8 other authors; 2000; A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495 [CrossRef]
    [Google Scholar]
  28. Liu L., Davies J. W., Stanley J. 1998; Mutational analysis of bean yellow dwarf virus, a geminivirus of the genus Mastrevirus that is adapted to dicotyledonous plants. J Gen Virol 79:2265–2274
    [Google Scholar]
  29. Liu L., Saunders K., Thomas C. L., Davies J. W., Stanley J. 1999; Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256:270–279 [CrossRef]
    [Google Scholar]
  30. Lucy A. P., Boulton M. I., Davies J. W., Maule A. J. 1996; Tissue specificity of Zea mays infection by maize streak virus. Mol Plant Microbe Interact 9:22–31 [CrossRef]
    [Google Scholar]
  31. Ludlow J. W. 1993; Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J 7:866–871
    [Google Scholar]
  32. Manley J. L., Tacke R. 1996; SR proteins and splicing control. Genes Dev 10:1569–1579 [CrossRef]
    [Google Scholar]
  33. Martin D. P., Rybicki E. P. 1998; Microcomputer-based quantification of maize streak virus symptoms in Zea mays . Phytopathology 88:422–427 [CrossRef]
    [Google Scholar]
  34. Martin D. P., Willment J. A., Rybicki E. P. 1999; Evaluation of maize streak virus pathogenicity in differentially resistant Zea mays genotypes. Phytopathology 89:695–700 [CrossRef]
    [Google Scholar]
  35. Martin D. P., Willment J. A., Billharz R., Velders R., Odhiambo B., Njuguna J., James D., Rybicki E. P. 2001; Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288:247–255 [CrossRef]
    [Google Scholar]
  36. McGivern D. R. 2002; Functional analysis of the Maize streak virus replication-associated proteins . PhD thesis University of East Anglia; Norwich, UK:
  37. McGivern D. R., Findlay K. C., Montague N. P., Boulton M. I. 2005; An intact RBR binding motif is not required for infectivity of Maize streak virus in cereals, but is required for invasion of mesophyll cells. J Gen Virol 86:797–801 [CrossRef]
    [Google Scholar]
  38. Missich R., Ramirez-Parra E., Gutierrez C. 2000; Relationship of oligomerization to DNA binding of wheat dwarf virus RepA and Rep proteins. Virology 273:178–188 [CrossRef]
    [Google Scholar]
  39. Moran E. 1994; Mammalian cell growth controls reflected through protein interactions with the adenovirus E1A gene products. Semin Virol 5:327–340 [CrossRef]
    [Google Scholar]
  40. Muñoz-Martín A., Collin S., Herreros E., Mullineaux P. M., Fernández-Lobato M., Fenoll C. 2003; Regulation of MSV and WDV virion-sense promoters by WDV nonstructural proteins: a role for their retinoblastoma protein-binding motifs. Virology 306:313–323 [CrossRef]
    [Google Scholar]
  41. Nakagami H., Sekine M., Murakami H., Shinmyo A. 1999; Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vitro. Plant J 18:243–252 [CrossRef]
    [Google Scholar]
  42. Oruetxebarria I., Kvarnheden A., Valkonen J. P. T. 2002; Analysis of putative interactions between potyviral replication proteins and plant retinoblastoma proteins. Virus Genes 24:65–75 [CrossRef]
    [Google Scholar]
  43. Palmer K. E., Rybicki E. P. 2001; Investigation of the potential of Maize streak virus to act as an infectious gene vector in maize plants. Arch Virol 146:1089–1104 [CrossRef]
    [Google Scholar]
  44. Palmer K. E., Thomson J. A., Rybicki E. P. 1999; Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Arch Virol 144:1345–1360 [CrossRef]
    [Google Scholar]
  45. Rybicki E. P., Briddon R. W., Brown J. K. 7 other authors 2000; Geminiviridae . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses . pp  285–297 Edited by Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Schnippenkoetter W. H., Martin D. P., Willment J. A., Rybicki E. P. 2001; Forced recombination between distinct strains of Maize streak virus . J Gen Virol 82:3081–3090
    [Google Scholar]
  48. Soni R., Carmichael J. P., Shah Z. H., Murray J. A. H. 1995; A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7:85–103 [CrossRef]
    [Google Scholar]
  49. Swofford D. L. 2001 paup*. Phylogenetic analysis using parsimony (*and other methods) version 4.0b8 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  50. Vousden K. 1993; Interactions of human papillomavirus transforming proteins with the products of tumor suppressor genes. FASEB J 7:872–879
    [Google Scholar]
  51. Willment J. A., Martin D. P., Rybicki E. P. 2001; Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data. J Virol Methods 93:75–87 [CrossRef]
    [Google Scholar]
  52. Wright E. A. 1995; Transcription of the maize streak virus genome . PhD thesis University of East Anglia; Norwich, UK:
  53. Wright E. A., Heckel T., Groenendijk J., Davies J. W., Boulton M. I. 1997; Splicing features in maize streak virus virion- and complementary-sense gene expression. Plant J 12:1285–1297 [CrossRef]
    [Google Scholar]
  54. Xie Q., Suarez-Lopez P., Gutierrez C. 1995; Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J 14:4073–4082
    [Google Scholar]
  55. Xie Q., Sanz-Burgos A. P., Guo H., Garcia J. A., Gutierrez C. 1999; GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39:647–656 [CrossRef]
    [Google Scholar]
  56. Yang Z., Yoder A. D. 1999; Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283 [CrossRef]
    [Google Scholar]
  57. Zhan X., Richardson K. A., Haley A., Morris B. A. M. 1993; The activity of the coat protein promoter of chloris striate mosaic virus is enhanced by its own and C1-C2 gene products. Virology 193:498–502 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80694-0
Loading
/content/journal/jgv/10.1099/vir.0.80694-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error