Determination of phosphorylated residues from human respiratory syncytial virus P protein that are dynamically dephosphorylated by cellular phosphatases: a possible role for serine 54 Free

Abstract

The 241 aa human respiratory synctyial virus (HRSV) Long strain P protein is phosphorylated at serines 116, 117 and/or 119, and 232. Phosphates added to these residues have slow turnover and can be detected in the absence of protein phosphatase inhibition. Inhibition of phosphatases PP1 and PP2A increases the level of phosphorylation at serines 116, 117 and/or 119, suggesting a more rapid turnover for phosphates added to these residues compared to that of S232. High-turnover phosphorylation is detected in the P-protein NH-terminal region, mainly at S54 and, to a lesser extent, at S39, in the Long strain. When the P protein bears the T46I substitution (in the remaining HRSV strains), phosphates are added to S30, S39, S45 and S54. Phosphatase PP1 removes phosphate at residues in the central part of the P-protein molecule, whereas those in the NH-terminal region are removed by phosphatase PP2A. The significance of the phosphorylation of the NH-terminal region residues for some P-protein functions was studied. The results indicated that this modification is not essential for P-protein oligomerization or for its role in viral RNA synthesis. Nonetheless, dephosphorylation at S54 could facilitate P–M protein interactions that probably occur during the egress of viral particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80692-0
2005-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir861109.html?itemId=/content/journal/jgv/10.1099/vir.0.80692-0&mimeType=html&fmt=ahah

References

  1. Alansari H., Potgieter L. N. D. 1994; Molecular cloning and sequence analysis of the phosphoprotein, nucleocapsid protein, matrix protein and 22K (M2) protein of the ovine respiratory syncytial virus. J Gen Virol 75:3597–3601 [CrossRef]
    [Google Scholar]
  2. Alberts A. S., Montminy M., Shenolikar S., Feramisco J. R. 1994; Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol Cell Biol 14:4398–4407
    [Google Scholar]
  3. Asenjo A., Villanueva N. 2000; Regulated but not constitutive human respiratory syncytial virus (HRSV) P protein phosphorylation is essential for oligomerization. FEBS Lett 467:279–284 [CrossRef]
    [Google Scholar]
  4. Barik S., McLean T., Dupuy L. C. 1995; Phosphorylation of Ser232 directly regulates the transcriptional activity of the P protein of human respiratory syncytial virus: phosphorylation of Ser237 may play an accessory role. Virology 213:405–412 [CrossRef]
    [Google Scholar]
  5. Bialojan C., Takai A. 1988; Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283–290
    [Google Scholar]
  6. Bitko V., Barik S. 1998; Persistant activation of RelA by respiratory syncytial virus involves protein kinase C, underphosphorylated I κ B β , and sequestration of protein phosphatase 2A by the viral phosphoprotein. J Virol 72:5610–5618
    [Google Scholar]
  7. Castagné N., Barbier A., Bernard J., Rezaei H., Huet J.-C., Henry C., Da Costa B., Eléouët J.-F. 2004; Biochemical characterization of the respiratory syncytial virus P–P and P–N protein complexes and localization of the P protein oligomerization domain. J Gen Virol 85:1643–1653 [CrossRef]
    [Google Scholar]
  8. Collins P. L., Hill M. G., Camargo E., Grosfeld H., Chanock R. M., Murphy B. R. 1995; Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A 92:11563–11567 [CrossRef]
    [Google Scholar]
  9. Collins P. L., Hill M. G., Cristina J., Grosfeld H. 1996; Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A 93:81–85 [CrossRef]
    [Google Scholar]
  10. Collins P. L., Chanock R. M., Murphy B. R. 2001; Respiratory syncytial virus. In Fields Virology , 4th edn. pp  1443–1485 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  11. Cuesta I., Geng X., Asenjo A., Villanueva N. 2000; Structural phosphoprotein M2-1 of the human respiratory syncytial virus is an RNA binding protein. J Virol 74:9858–9867 [CrossRef]
    [Google Scholar]
  12. Das S. C., Pattnaik A. S. 2004; Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth. J Virol 78:6420–6430 [CrossRef]
    [Google Scholar]
  13. Dudas R. A., Karron R. A. 1998; Respiratory syncytial virus vaccines. Clin Microbiol Rev 11:430–439
    [Google Scholar]
  14. Falsey A. R., Cunningham C. K., Barker W. H., Kouides R. W., Yuen J. B., Menegus M., Weiner L. B., Bonville C. A., Betts R. F. 1995; Respiratory syncytial virus and influenza A infections in the hospitalized elderly. J Infect Dis 172:389–394 [CrossRef]
    [Google Scholar]
  15. Fearns R., Peeples M. E., Collins P. L. 1997; Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome. Virology 236:188–201 [CrossRef]
    [Google Scholar]
  16. Gao Y., Lenard J. 1995; Multimerization and transcriptional activation of the phosphoprotein (P) of vesicular stomatitis virus by casein kinase-II. EMBO J 14:1240–1247
    [Google Scholar]
  17. Gubbay O., Curran J., Kolakofsky D. 2001; Sendai virus genome synthesis and assembly are coupled: a possible mechanism to promote viral RNA polymerase processivity. J Gen Virol 82:2895–2903
    [Google Scholar]
  18. Hardy R. W., Wertz G. W. 1998; The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J Virol 72:520–526
    [Google Scholar]
  19. Harrington R. D., Hooton T. M., Hackman R. C., Storch G. A., Osborne B., Gleaves C. A., Benson A., Meyers J. D. 1992; An outbreak of respiratory syncytial virus in a bone marrow transplant center. J Infect Dis 165:987–993 [CrossRef]
    [Google Scholar]
  20. Higuchi R., Krummel B., Saiki R. K. 1988; A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367 [CrossRef]
    [Google Scholar]
  21. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. 1992; Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol 66:4901–4908
    [Google Scholar]
  22. Lamb R. A., Kolakofsky D. 2001; Paramyxoviridae : the viruses and their replication. In Fields Virology pp  1305–1340 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  23. López J. A., Villanueva N., Melero J. A., Portela A. 1988; Nucleotide sequence of the fusion and phosphoprotein genes of the human respiratory syncytial (RS) virus Long strain: evidence of subtype genetic heterogeneity. Virus Res 10:249–261 [CrossRef]
    [Google Scholar]
  24. Lu B., Ma C.-H., Brazas R., Jin H. 2002; The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 76:10776–10784 [CrossRef]
    [Google Scholar]
  25. Mason S. W., Aberg E., Lawetz C., DeLong R., Whitehead P., Liuzzi M. 2003; Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol 77:10670–10676 [CrossRef]
    [Google Scholar]
  26. Mazumder B., Barik S. 1994; Requirements of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial viral phosphoprotein P: transdominant negative phenotype of phosphorylation-defective P mutants. Virology 205:104–111 [CrossRef]
    [Google Scholar]
  27. Mazumder B., Adhikary G., Barik S. 1994; Bacterial expression of human respiratory syncytial viral phosphoprotein P and identification of Ser237 as the site of phosphorylation by cellular casein kinase II. Virology 205:93–103 [CrossRef]
    [Google Scholar]
  28. Navarro J., López-Otín C., Villanueva N. 1991; Location of phosphorylated residues in human respiratory syncytial virus phosphoprotein. J Gen Virol 72:1455–1459 [CrossRef]
    [Google Scholar]
  29. Pastey M. K., Gower T. L., Spearman P. W., Crowe J. E. Jr, Graham B. S. 2000; A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med 6:35–40 [CrossRef]
    [Google Scholar]
  30. Pearson R. B., Kemp B. E. 1991; Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200:62–81
    [Google Scholar]
  31. Roach P. J. 1991; Multisite and hierarchal protein phosphorylation. J Biol Chem 266:14139–14142
    [Google Scholar]
  32. Rodríguez L., Cuesta I., Asenjo A., Villanueva N. 2004; Human respiratory syncytial virus matrix protein is an RNA-binding protein: binding properties, location and identity of the RNA contact residues. J Gen Virol 85:709–719 [CrossRef]
    [Google Scholar]
  33. Sánchez-Seco M. P., Navarro J., Martínez R., Villanueva N. 1995; C-Terminal phosphorylation of human respiratory syncytial virus P protein occurs mainly at serine residue 232. J Gen Virol 76:425–430 [CrossRef]
    [Google Scholar]
  34. Schmitt A. P., Leser G. P., Waning D. L., Lamb R. A. 2002; Requirements for budding of paramyxovirus simian virus 5 virus-like particles. J Virol 76:3952–3964 [CrossRef]
    [Google Scholar]
  35. Sudo K., Watanabe W., Mori S., Konno K., Shigeta S., Yokota T. 1999; Mouse model of respiratory syncytial virus infection to evaluate antiviral activity in vivo. Antivir Chem Chemother 10:135–139 [CrossRef]
    [Google Scholar]
  36. Tran K. C., Collins P. L., Teng M. N. 2004; Effects of altering the transcription termination signals of respiratory syncytial virus on viral gene expression and growth in vitro and in vivo. J Virol 78:692–699 [CrossRef]
    [Google Scholar]
  37. Ulloa L., Serra R., Asenjo A., Villanueva N. 1998; Interactions between cellular actin and human respiratory syncytial virus (HRSV. Virus Res 53:13–25 [CrossRef]
    [Google Scholar]
  38. Villanueva N., Navarro J., Cubero E. 1991; Antiviral effects of xanthate D609 on the human respiratory syncytial virus growth cycle. Virology 181:101–108 [CrossRef]
    [Google Scholar]
  39. Villanueva N., Navarro J., Méndez E., García-Albert I. 1994; Identification of a protein kinase involved in the phosphorylation of the C-terminal region of human respiratory syncytial virus P protein. J Gen Virol 75:555–565 [CrossRef]
    [Google Scholar]
  40. Villanueva N., Hardy R., Asenjo A., Yu Q., Wertz G. 2000; The bulk of the phosphorylation of human respiratory syncytial virus phosphoprotein is not essential but modulates viral RNA transcription and replication. J Gen Virol 81:129–133
    [Google Scholar]
  41. Whitehead S. S., Bukreyev A., Teng M. N., Firestone C.-Y., St Claire M., Elkins W. R., Collins P. L., Murphy B. R. 1999; Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol 73:3438–3442
    [Google Scholar]
  42. Yu Q., Hardy R. W., Wertz G. W. 1995; Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans -acting requirements for RNA replication. J Virol 69:2412–2419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80692-0
Loading
/content/journal/jgv/10.1099/vir.0.80692-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed