1887

Abstract

The severity of disease caused in humans by H5N1 influenza viruses remains unexplained. The NS gene of Hong Kong H5N1/97 viruses was shown to contribute to high pathogenicity of reassortants in a pig model. However, the molecular pathogenesis and host immune response underlying this phenomenon remain unclear. Here, in a mouse model, H1N1 A/Puerto Rico/8/34 (PR/8) reassortants that contained the H5N1/97 NS gene, the H5N1/01 NS gene, or an altered H5N1/97 NS gene encoding a Glu→Asp substitution in NS1 was studied. The pathogenicity of reassortant viruses, the induction of cytokines and chemokine CXCL1 (KC) in the lungs and specific B- and T-cell responses was characterized. In mice infected with reassortant virus containing the H5N1/97 NS gene, the mouse lethal dose (50 %) and lung virus titres were similar to those of PR/8, which is highly pathogenic to mice. This reassortant virus required two more days than PR/8 to be cleared from the lungs of infected mice. Reassortants containing the altered H5N1/97 NS gene or the H5N1/01 NS gene demonstrated attenuated pathogenicity and lower lung titres in mice. Specific B- and T-cell responses were consistent with viral pathogenicity and did not explain the delayed clearance of the H5N1/97 NS reassortant. The reassortant induced elevated pulmonary concentrations of the inflammatory cytokines IL1, IL1, IL6, IFN- and chemokine KC, and decreased concentrations of the anti-inflammatory cytokine IL10. This cytokine imbalance is reminiscent of the clinical findings in two humans who died of H5N1/97 infection and may explain the unusual severity of the disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80663-0
2005-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir861121.html?itemId=/content/journal/jgv/10.1099/vir.0.80663-0&mimeType=html&fmt=ahah

References

  1. Altman, J. D., Moss, P. A., Goulder, P. J., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. & Davis, M. M. ( 1996; ). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.[CrossRef]
    [Google Scholar]
  2. Basler, C. F., Reid, A. H., Dybing, J. K. & 9 other authors ( 2001; ). Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A 98, 2746–2751.[CrossRef]
    [Google Scholar]
  3. Belz, G. T., Xie, W., Altman, J. D. & Doherty, P. C. ( 2000; ). A previously unrecognized H-2Db-restricted peptide prominent in the primary influenza A virus-specific CD8+ T-cell response is much less apparent following secondary challenge. J Virol 74, 3486–3493.[CrossRef]
    [Google Scholar]
  4. Belz, G. T., Xie, W. & Doherty, P. C. ( 2001; ). Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J Immunol 166, 4627–4633.[CrossRef]
    [Google Scholar]
  5. Cheung, C. Y., Poon, L. L. M., Lau, A. S., Luk, W., Lau, Y. L., Shortridge, K. F., Gordon, S., Guan, Y. & Peiris, J. S. M. ( 2002; ). Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360, 1831–1837.[CrossRef]
    [Google Scholar]
  6. Claas, E. C., Osterhaus, A. D., van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F. & Webster, R. G. ( 1998; ). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477.[CrossRef]
    [Google Scholar]
  7. Doherty, P. C., Allan, W., Eichelberger, W. & Carding, S. R. ( 1992; ). Roles of αβ and γδT cell subsets in viral immunity. Annu Rev Immunol 10, 123–151.[CrossRef]
    [Google Scholar]
  8. Fisman, D. N. ( 2000; ). Hemophagocytic syndromes and infection. Emerg Infect Dis 6, 601–608.[CrossRef]
    [Google Scholar]
  9. Flynn, K. J., Belz, G. T., Altman, J. D., Ahmed, R., Woodland, D. L. & Doherty, P. C. ( 1998; ). Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691.[CrossRef]
    [Google Scholar]
  10. Garcia-Sastre, A. ( 2001; ). Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279, 375–384.[CrossRef]
    [Google Scholar]
  11. Garcia-Sastre, A. ( 2002; ). Mechanisms of inhibition of the host interferon α/β-mediated antiviral response by viruses. Microbes Infect 4, 647–655.[CrossRef]
    [Google Scholar]
  12. Garcia-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., Palese, P. & Muster, T. ( 1998; ). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330.[CrossRef]
    [Google Scholar]
  13. Geiss, G. K., Salvatore, M., Tumpey, T. M. & 8 other authors ( 2002; ). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution for pandemic influenza. Proc Natl Acad Sci U S A 99, 10736–10741.[CrossRef]
    [Google Scholar]
  14. Guan, Y., Peiris, J. S. M., Lipatov, A. S., Ellis, T. M., Dyrting, K. C., Krauss, S., Zhang, L. J., Webster, R. G. & Shortridge, K. F. ( 2002; ). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99, 8950–8955.[CrossRef]
    [Google Scholar]
  15. Guan, Y., Poon, L. L. M., Cheung, C. Y. & 10 other authors ( 2004; ). H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 101, 8156–8161.[CrossRef]
    [Google Scholar]
  16. Hamilton, T. A., Ohmori, Y. & Tebo, J. ( 2002; ). Regulation of chemokine expression by anti-inflammatory cytokines. Immunol Res 25, 229–245.[CrossRef]
    [Google Scholar]
  17. Hayden, F. G., Fritz, R. S., Lobo, M., Alvord, W. G., Strober, W. & Straus, S. E. ( 1998; ). Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest 101, 643–649.[CrossRef]
    [Google Scholar]
  18. Headley, A. S., Tolley, E. & Meduri, G. U. ( 1997; ). Infections and the inflammatory response in acute respiratory distress syndrome. Chest 111, 1306–1321.[CrossRef]
    [Google Scholar]
  19. Hennet, T., Ziltener, H. J., Frei, K. & Peterhans, E. ( 1992; ). A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol 149, 932–939.
    [Google Scholar]
  20. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  21. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  22. Hoffmann, E., Krauss, S., Perez, D., Webby, R. & Webster, R. G. ( 2002; ). Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20, 3165–3170.[CrossRef]
    [Google Scholar]
  23. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. ( 1994; ). Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654.[CrossRef]
    [Google Scholar]
  24. Kaiser, L., Fritz, R. S., Straus, S. E., Gubareva, L. & Hayden, F. G. ( 2001; ). Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol 64, 262–268.[CrossRef]
    [Google Scholar]
  25. Krug, R. M., Yuan, W., Noah, D. L. & Latham, A. G. ( 2003; ). Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309, 181–189.[CrossRef]
    [Google Scholar]
  26. Lipatov, A. S., Krauss, S., Guan, Y., Peiris, M., Rehg, J. E., Perez, D. R. & Webster, R. G. ( 2003; ). Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001. J Virol 77, 3816–3823.[CrossRef]
    [Google Scholar]
  27. Monteiro, J. M., Harvey, C. & Trinchieri, G. ( 1998; ). Role of interleukin-12 in primary influenza virus infection. J Virol 72, 4825–4831.
    [Google Scholar]
  28. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. ( 2001; ). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683–765.[CrossRef]
    [Google Scholar]
  29. Reed, L. J. & Muench, H. ( 1938; ). A simple method for estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  30. Sangster, M. Y., Topham, D. J., D'Costa, S., Cardin, R. D., Marion, T. N., Myers, L. K. & Doherty, P. C. ( 2000; ). Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 164, 1820–1828.[CrossRef]
    [Google Scholar]
  31. Sarawar, S. R. & Doherty, P. C. ( 1994; ). Concurrent production of interleukin-2, interleukin-10, and gamma interferon in the regional lymph nodes of mice with influenza pneumonia. J Virol 68, 3112–3119.
    [Google Scholar]
  32. Seo, S. H. & Webster, R. G. ( 2002; ). Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol 76, 1071–1076.[CrossRef]
    [Google Scholar]
  33. Seo, S. H., Goloubeva, O., Webby, R. & Webster, R. G. ( 2001; ). Characterization of a porcine lung epithelial cell line suitable for influenza virus studies. J Virol 75, 9517–9525.[CrossRef]
    [Google Scholar]
  34. Seo, S. H., Hoffmann, E. & Webster, R. G. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8, 950–954.[CrossRef]
    [Google Scholar]
  35. Skoner, D. P., Gentile, D. A., Patel, A. & Doyle, W. J. ( 1999; ). Evidence for cytokine mediation of disease expression in adults experimentally infected with influenza A virus. J Infect Dis 180, 10–14.[CrossRef]
    [Google Scholar]
  36. Subbarao, K., Klimov, A., Katz, J. & 13 other authors ( 1998; ). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396.[CrossRef]
    [Google Scholar]
  37. Talon, J., Salvatore, M., O'Neill, R. E., Nakaya, Y., Zheng, H., Muster, T., Garcia-Sastre, A. & Palese, P. ( 2000; ). Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc Natl Acad Sci U S A 97, 4309–4314.[CrossRef]
    [Google Scholar]
  38. To, K. F., Chan, P. K., Chan, K. F. & 9 other authors ( 2001; ). Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol 63, 242–246.[CrossRef]
    [Google Scholar]
  39. Townsend, A. R., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D. & McMichael, A. J. ( 1986; ). The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959–968.[CrossRef]
    [Google Scholar]
  40. Tumpey, T. M., Lu, X., Morken, T., Zaki, S. R. & Katz, J. M. ( 2000; ). Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans. J Virol 74, 6105–6116.[CrossRef]
    [Google Scholar]
  41. Yuen, K. Y., Chan, P. K. S., Peiris, M. & 8 other authors ( 1998; ). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80663-0
Loading
/content/journal/jgv/10.1099/vir.0.80663-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error