1887

Abstract

Murine gammaherpesvirus-68 (MHV-68) ORF28 is a gammaherpesvirus-specific gene of unknown function. Analysis of epitope-tagged ORF28 protein indicated that it was membrane-associated and incorporated into virions in -glycosylated, -glycosylated and unglycosylated forms. The extensive glycosylation of the small ORF28 extracellular domain – most forms of the protein appeared to be mainly carbohydrate by weight – suggested that a major function of ORF28 is to attach a variety of glycans to the virion surface. MHV-68 lacking ORF28 showed normal lytic replication and and normal latency establishment. MHV-68 ORF28 therefore encodes a small, membrane-bound and extensively glycosylated virion protein, whose function is entirely dispensable for normal, single-cycle host colonization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80661-0
2005-04-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir860919.html?itemId=/content/journal/jgv/10.1099/vir.0.80661-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. ( 2000; ). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef]
    [Google Scholar]
  2. Blasdell, K., McCracken, C., Morris, A., Nash, A. A., Begon, M., Bennett, M. & Stewart, J. P. ( 2003; ). The wood mouse is a natural host for Murid herpesvirus 4. J Gen Virol 84, 111–113.[CrossRef]
    [Google Scholar]
  3. Blaskovic, D., Stancekova, M., Svobodova, J. & Mistrikova, J. ( 1980; ). Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24, 468.
    [Google Scholar]
  4. Boname, J. M. & Stevenson, P. G. ( 2001; ). MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627–636.[CrossRef]
    [Google Scholar]
  5. Bortz, E., Whitelegge, J. P., Jia, Q., Zhou, Z. H., Stewart, J. P., Wu, T.-T. & Sun, R. ( 2003; ). Identification of proteins associated with murine gammaherpesvirus 68 virions. J Virol 77, 13425–13432.[CrossRef]
    [Google Scholar]
  6. Borza, C. M. & Hutt-Fletcher, L. M. ( 1998; ). Epstein-Barr virus recombinant lacking expression of glycoprotein gp150 infects B cells normally but is enhanced for infection of epithelial cells. J Virol 72, 7577–7582.
    [Google Scholar]
  7. Bourne, Y., Astoul, C. H., Zamboni, V., Peumans, W. J., Menu-Bouaouiche, L., van Damme, E. J. M., Barre, A. & Rougé, P. ( 2002; ). Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J 364, 173–180.
    [Google Scholar]
  8. Bryant, N. A., Davis-Poynter, N., Vanderplasschen, A. & Alcami, A. ( 2003; ). Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J 22, 833–846.[CrossRef]
    [Google Scholar]
  9. Cardin, R. D., Brooks, J. W., Sarawar, S. R. & Doherty, P. C. ( 1996; ). Progressive loss of CD8+ T cell-mediated control of a γ-herpesvirus in the absence of CD4+ T cells. J Exp Med 184, 863–871.[CrossRef]
    [Google Scholar]
  10. Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. ( 2003; ). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410–2417.[CrossRef]
    [Google Scholar]
  11. de Lima, B. D., May, J. S. & Stevenson, P. G. ( 2004; ). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef]
    [Google Scholar]
  12. Doherty, P. C., Christensen, J. P., Belz, G. T., Stevenson, P. G. & Sangster, M. Y. ( 2001; ). Dissecting the host response to a γ-herpesvirus. Philos Trans R Soc Lond B Biol Sci 356, 581–593.[CrossRef]
    [Google Scholar]
  13. Efstathiou, S., Ho, Y. M. & Minson, A. C. ( 1990; ). Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71, 1355–1364.[CrossRef]
    [Google Scholar]
  14. Helenius, A. & Aebi, M. ( 2001; ). Intracellular functions of N-linked glycans. Science 291, 2364–2369.[CrossRef]
    [Google Scholar]
  15. Herrold, R. E., Marchini, A., Fruehling, S. & Longnecker, R. ( 1996; ). Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. J Virol 70, 2049–2054.
    [Google Scholar]
  16. Johnson, D. C., Frame, M. C., Ligas, M. W., Cross, A. M. & Stow, N. D. ( 1988; ). Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol 62, 1347–1354.
    [Google Scholar]
  17. Kapadia, S. B., Molina, H., van Berkel, V., Speck, S. H. & Virgin, H. W., IV ( 1999; ). Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73, 7658–7670.
    [Google Scholar]
  18. Kapadia, S. B., Levine, B., Speck, S. H. & Virgin, H. W., IV ( 2002; ). Critical role of complement and viral evasion of complement in acute, persistent, and latent γ-herpesvirus infection. Immunity 17, 143–155.[CrossRef]
    [Google Scholar]
  19. Kurilla, M. G., Heineman, T., Davenport, L. C., Kieff, E. & Hutt-Fletcher, L. M. ( 1995; ). A novel Epstein-Barr virus glycoprotein gp150 expressed from the BDLF3 open reading frame. Virology 209, 108–121.[CrossRef]
    [Google Scholar]
  20. Lee, B. J., Koszinowski, U. H., Sarawar, S. R. & Adler, H. ( 2003; ). A gammaherpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J Immunol 170, 243–251.[CrossRef]
    [Google Scholar]
  21. Lopes, F. B., Colaco, S., May, J. S. & Stevenson, P. G. ( 2004; ). Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78, 13370–13375.[CrossRef]
    [Google Scholar]
  22. Lubinski, J., Wang, L., Mastellos, D., Sahu, A., Lambris, J. D. & Friedman, H. M. ( 1999; ). In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J Exp Med 190, 1637–1646.[CrossRef]
    [Google Scholar]
  23. Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M. & Hutt-Fletcher, L. M. ( 2000; ). Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol 74, 6324–6332.[CrossRef]
    [Google Scholar]
  24. Moorman, N. J., Virgin, H. W., IV & Speck, S. H. ( 2003; ). Disruption of the gene encoding the γHV68 v-GPCR leads to decreased efficiency of reactivation from latency. Virology 307, 179–190.[CrossRef]
    [Google Scholar]
  25. Moorman, N. J., Lin, C. Y. & Speck, S. H. ( 2004; ). Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78, 10282–10290.[CrossRef]
    [Google Scholar]
  26. Nolan, L. A. & Morgan, A. J. ( 1995; ). The Epstein–Barr virus open reading frame BDLF3 codes for a 100–150 kDa glycoprotein. J Gen Virol 76, 1381–1392.[CrossRef]
    [Google Scholar]
  27. Parry, C. M., Simas, J. P., Smith, V. P., Stewart, C. A., Minson, A. C., Efstathiou, S. & Alcami, A. ( 2000; ). A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191, 573–578.[CrossRef]
    [Google Scholar]
  28. Peñaranda, M. E., Lagenaur, L. A., Pierik, L. T., Berline, J. W., MacPhail, L. A., Greenspan, D., Greenspan, J. S. & Palefsky, J. M. ( 1997; ). Expression of Epstein–Barr virus BMRF-2 and BDLF-3 genes in hairy leukoplakia. J Gen Virol 78, 3361–3370.
    [Google Scholar]
  29. Sastry, M. V. K., Banarjee, P., Patanjali, S. R., Swamy, M. J., Swarnalatha, G. V. & Surolia, A. ( 1986; ). Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-d-gal(1→3)d-GalNAc). J Biol Chem 261, 11726–11733.
    [Google Scholar]
  30. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  31. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. ( 2002; ). K3-mediated evasion of CD8+ T cells aids amplification of a latent γ-herpesvirus. Nat Immunol 3, 733–740.
    [Google Scholar]
  32. van Berkel, V., Preiter, K., Virgin, H. W., IV & Speck, S. H. ( 1999; ). Identification and initial characterization of the murine gammaherpesvirus 68 gene M3, encoding an abundantly secreted protein. J Virol 73, 4524–4529.
    [Google Scholar]
  33. Virgin, H. W., IV Latreille, P., Wamsley, P., Hallsworth, K., Weck, K. E., Dal Canto, A. J. & Speck, S. H. ( 1997; ). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894–5904.
    [Google Scholar]
  34. Weck, K. E., Dal Canto, A. J., Gould, J. D., O'Guin, A. K., Roth, K. A., Saffitz, J. E., Speck, S. H. & Virgin, H. W. ( 1997; ). Murine γ-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-γ responsiveness: a new model for virus-induced vascular disease. Nat Med 3, 1346–1353.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80661-0
Loading
/content/journal/jgv/10.1099/vir.0.80661-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error