1887

Abstract

Porcine circovirus 2 (PCV2) is associated with post-weaning multisystemic wasting syndrome and reproductive problems in pigs. Cells of the monocyte/macrophage lineage are important target cells in PCV2-infected pigs, but the method of binding and entry of PCV2 into these cells is unknown. Therefore, binding and entry of PCV2 to the porcine monocytic cell line 3D4/31 were studied by visualization of binding and internalization of PCV2 virus-like particles (VLPs) by confocal microscopy and chemical inhibition of endocytic pathways (clathrin- and caveolae-mediated endocytosis and macropinocytosis), followed by evaluation of the level of PCV2 infection. It was shown that PCV2 VLPs bound to all cells, with maximal binding starting from 30 min post-incubation. Bound PCV2 VLPs were internalized in 47±5·0 % of cells. Internalization was continuous, with 70·5±9·7 % of bound PCV2 VLPs internalized at 360 min post-incubation. Internalizing PCV2 VLPs co-localized with clathrin. PCV2 infection was decreased significantly by chemical inhibitors that specifically blocked (i) actin-dependent processes, including cytochalasin D (75·5±7·0 % reduction) and latrunculin B (71·0±3·0 % reduction), and (ii) clathrin-mediated endocytosis, including potassium depletion combined with hypotonic shock (50·2±6·3 % reduction), hypertonic medium (56·4±5·7 % reduction), cytosol acidification (59·1±7·1 % reduction) and amantadine (52·6±6·7 % reduction). Inhibiting macropinocytosis with amiloride and caveolae-dependent endocytosis with nystatin did not decrease PCV2 infection significantly. PCV2 infection was reduced by the lysosomotropic weak bases ammonium chloride (47·0±7·9 % reduction) and chloroquine diphosphate (49·0±5·6 % reduction). Together, these data demonstrate that PCV2 enters 3D4/31 cells predominantly via clathrin-mediated endocytosis and requires an acidic environment for infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80652-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/7/vir862057.html?itemId=/content/journal/jgv/10.1099/vir.0.80652-0&mimeType=html&fmt=ahah

References

  1. Akula S. M., Naranatt P. P., Walia N.-S., Wang F.-Z., Fegley B., Chandran B. 2003; Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J Virol 77:7978–7990 [CrossRef]
    [Google Scholar]
  2. Allan G. M., Kennedy S., McNeilly F., Foster J. C., Ellis J. A., Krakowka S. J., Meehan B. M., Adair B. M. 1999; Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 121:1–11 [CrossRef]
    [Google Scholar]
  3. Bartlett J. S., Wilcher R., Samulski R. J. 2000; Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 74:2777–2785 [CrossRef]
    [Google Scholar]
  4. Basak S., Turner H. 1992; Infectious entry pathway for canine parvovirus. Virology 186:368–376 [CrossRef]
    [Google Scholar]
  5. Bomsel M., Alfsen A. 2003; Entry of viruses through the epithelial barrier: pathogenic trickery. Nat Rev Mol Cell Biol 4:57–68 [CrossRef]
    [Google Scholar]
  6. Brown S. S., Spudich J. A. 1979; Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol 83:657–662 [CrossRef]
    [Google Scholar]
  7. Conner S. D., Schmid S. L. 2003; Regulated portals of entry into the cell. Nature 422:37–44 [CrossRef]
    [Google Scholar]
  8. Cooper J. A. 1987; Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478 [CrossRef]
    [Google Scholar]
  9. Crowther R. A., Berriman J. A., Curran W. L., Allan G. M., Todd D. 2003; Comparison of the structures of three circoviruses: Chicken anemia virus , Porcine circovirus type 2 , and Beak and feather disease virus . J Virol 77:13036–13041 [CrossRef]
    [Google Scholar]
  10. Durrbach A., Louvard D., Coudrier E. 1996; Actin filaments facilitate two steps of endocytosis. J Cell Sci 109:457–465
    [Google Scholar]
  11. Ellis J., Hassard L., Clark E. 9 other authors 1998; Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J 39:44–51
    [Google Scholar]
  12. Engqvist-Goldstein Å. E. Y., Drubin D. G. 2003; Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332 [CrossRef]
    [Google Scholar]
  13. Flanagan M. D., Lin S. 1980; Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem 255:835–838
    [Google Scholar]
  14. Fujimoto L. M., Roth R., Heuser J. E., Schmid S. L. 2000; Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1:161–171 [CrossRef]
    [Google Scholar]
  15. Gonzalez-Dunia D., Cubitt B., de la Torre J. C. 1998; Mechanism of Borna disease virus entry into cells. J Virol 72:783–788
    [Google Scholar]
  16. Grimmer S., van Deurs B., Sandvig K. 2002; Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115:2953–2962
    [Google Scholar]
  17. Hamel A., Lin L. L., Nayar G. P. S. 1998; Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 72:5262–5267
    [Google Scholar]
  18. Hansen S. H., Sandvig K., van Deurs B. 1993; Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J Cell Biol 121:61–72 [CrossRef]
    [Google Scholar]
  19. Heuser J. E., Anderson R. G. 1989; Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400 [CrossRef]
    [Google Scholar]
  20. Jeng R. L., Welch M. D. 2001; Cytoskeleton: actin and endocytosis – no longer the weakest link. Curr Biol 11:R691–R694 [CrossRef]
    [Google Scholar]
  21. Kirchhausen T. 2000; Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198 [CrossRef]
    [Google Scholar]
  22. Koval M., Preiter K., Adles C., Stahl P. D., Steinberg T. H. 1998; Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 242:265–273 [CrossRef]
    [Google Scholar]
  23. Larkin J. M., Brown M. S., Goldstein J. L., Anderson R. G. W. 1983; Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell 33:273–285 [CrossRef]
    [Google Scholar]
  24. Lee E., Knecht D. A. 2002; Visualization of actin dynamics during macropinocytosis and exocytosis. Traffic 3:186–192 [CrossRef]
    [Google Scholar]
  25. Li Y., van Drunen Littel-van den Hurk S., Babiuk L. A., Liang X. 1995; Characterization of cell-binding properties of bovine herpesvirus 1 glycoproteins B, C, and D: identification of a dual cell-binding function of gB. J Virol 69:4758–4768
    [Google Scholar]
  26. Mankertz A., Mankertz J., Wolf K., Buhk H.-J. 1998; Identification of a protein essential for replication of porcine circovirus. J Gen Virol 79:381–384
    [Google Scholar]
  27. Martínez C. G., Guinea R., Benavente J., Carrasco L. 1996; The entry of reovirus into L cells is dependent on vacuolar proton-ATPase activity. J Virol 70:576–579
    [Google Scholar]
  28. Maxfield F. R. 1982; Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol 95:676–681 [CrossRef]
    [Google Scholar]
  29. McNeilly F., McNair I., Mackie D. P., Meehan B. M., Kennedy S., Moffett D., Ellis J., Krakowka S., Allan G. M. 2001; Production, characterisation and applications of monoclonal antibodies to porcine circovirus 2. Arch Virol 146:909–922 [CrossRef]
    [Google Scholar]
  30. Meerts P., Misinzo G., McNeilly F., Nauwynck H. J. 2005; Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Arch Virol 150:427–441 [CrossRef]
    [Google Scholar]
  31. Meier O., Greber U. F. 2003; Adenovirus endocytosis. J Gene Med 5:451–462
    [Google Scholar]
  32. Merrifield C. J., Feldman M. E., Wan L., Almers W. 2002; Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698 [CrossRef]
    [Google Scholar]
  33. Morozov I., Sirinarumitr T., Sorden S. D., Halbur P. G., Morgan M. K., Yoon K.-J., Paul P. S. 1998; Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 36:2535–2541
    [Google Scholar]
  34. Mundy D. I., Machleidt T., Ying Y., Anderson R. G. W., Bloom G. S. 2002; Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339 [CrossRef]
    [Google Scholar]
  35. Muro S., Wiewrodt R., Thomas A., Koniaris L., Albelda S. M., Muzykantov V. R., Koval M. 2003; A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116:1599–1609 [CrossRef]
    [Google Scholar]
  36. Nawagitgul P., Morozov I., Bolin S. R., Harms P. A., Sorden S. D., Paul P. S. 2000; Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81:2281–2287
    [Google Scholar]
  37. Nichols B. J., Lippincott-Schwartz J. 2001; Endocytosis without clathrin coats. Trends Cell Biol 11:406–412 [CrossRef]
    [Google Scholar]
  38. Ohkuma S., Poole B. 1978; Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75:3327–3331 [CrossRef]
    [Google Scholar]
  39. Parker J. S. L., Parrish C. R. 2000; Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J Virol 74:1919–1930 [CrossRef]
    [Google Scholar]
  40. Pelkmans L., Helenius A. 2002; Endocytosis via caveolae. Traffic 3:311–320 [CrossRef]
    [Google Scholar]
  41. Pelkmans L., Püntener D., Helenius A. 2002; Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539 [CrossRef]
    [Google Scholar]
  42. Pho M. T., Ashok A., Atwood W. J. 2000; JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J Virol 74:2288–2292 [CrossRef]
    [Google Scholar]
  43. Phonphok Y., Rosenthal K. S. 1991; Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett 281:188–190 [CrossRef]
    [Google Scholar]
  44. Prchla E., Kuechler E., Blaas D., Fuchs R. 1994; Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol 68:3713–3723
    [Google Scholar]
  45. Pringle C. R. 1999; Virus taxonomy at the XIth International Congress of Virology. Sydney, Australia: 1999 Arch Virol 144:2065–2070 [CrossRef]
    [Google Scholar]
  46. Racoosin E. L., Swanson J. A. 1994; Labeling of endocytic vesicles using fluorescent probes for fluid-phase endocytosis. In Cell Biology: a Laboratory Handbook vol 2 pp  375–380 Edited by Celis J. E. New York: Academic Press;
    [Google Scholar]
  47. Roden R. B. S., Kirnbauer R., Jenson A. B., Lowy D. R., Schiller J. T. 1994; Interaction of papillomaviruses with the cell surface. J Virol 68:7260–7266
    [Google Scholar]
  48. Rodríguez E., Everitt E. 1996; Adenovirus uncoating and nuclear establishment are not affected by weak base amines. J Virol 70:3470–3477
    [Google Scholar]
  49. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y.-S., Glenney J. R., Anderson R. G. W. 1992; Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682 [CrossRef]
    [Google Scholar]
  50. Sanchez R. E. Jr, Nauwynck H. J., McNeilly F., Allan G. M., Pensaert M. B. 2001; Porcine circovirus 2 infection in swine foetuses inoculated at different stages of gestation. Vet Microbiol 83:169–176 [CrossRef]
    [Google Scholar]
  51. Sanchez R. E. Jr, Meerts P., Nauwynck H. J., Pensaert M. B. 2003; Change of porcine circovirus 2 target cells in pigs during development from fetal to early postnatal life. Vet Microbiol 95:15–25 [CrossRef]
    [Google Scholar]
  52. Sanchez R. E. Jr, Meerts P., Nauwynck H. J., Ellis J. A., Pensaert M. B. 2004; Characteristics of porcine circovirus-2 replication in lymphoid organs of pigs inoculated in late gestation or postnatally and possible relation to clinical and pathological outcome of infection. J Vet Diagn Invest 16:175–185 [CrossRef]
    [Google Scholar]
  53. Sandvig K., Olsnes S., Petersen O. W., van Deurs B. 1987; Acidification of the cytosol inhibits endocytosis from coated pits. J Cell Biol 105:679–689 [CrossRef]
    [Google Scholar]
  54. Sieczkarski S. B., Whittaker G. R. 2002; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545
    [Google Scholar]
  55. Spector I., Shochet N. R., Kashman Y., Groweiss A. 1983; Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495 [CrossRef]
    [Google Scholar]
  56. Tardieu M., Epstein R. L., Weiner H. L. 1982; Interaction of viruses with cell surface receptors. Int Rev Cytol 80:27–61
    [Google Scholar]
  57. Tischer I., Rasch R., Tochtermann G. 1974; Characterization of papovavirus- and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol A 226:153–167
    [Google Scholar]
  58. Tischer I., Mields W., Wolff D., Vagt M., Griem W. 1986; Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol 91:271–276 [CrossRef]
    [Google Scholar]
  59. Todd D., McNulty M. S., Mankertz A., Lukert P. D., Randles J. W., Dale J. L. 2000; Genus Circovirus . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses pp  299–303 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  60. Van de Walle G. R., Favoreel H. W., Nauwynck H. J., van Oostveldt P., Pensaert M. B. 2001; Involvement of cellular cytoskeleton components in antibody-induced internalization of viral glycoproteins in pseudorabies virus-infected monocytes. Virology 288:129–138 [CrossRef]
    [Google Scholar]
  61. Varga M. J., Weibull C., Everitt E. 1991; Infectious entry pathway of adenovirus type 2. J Virol 65:6061–6070
    [Google Scholar]
  62. Weingartl H. M., Sabara M., Pasick J., van Moorlehem E., Babiuk L. 2002; Continuous porcine cell lines developed from alveolar macrophages: partial characterization and virus susceptibility. J Virol Methods 104:203–216 [CrossRef]
    [Google Scholar]
  63. West M. A., Bretscher M. S., Watts C. 1989; Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol 109:2731–2739 [CrossRef]
    [Google Scholar]
  64. Yan M., Peng J., Jabbar I. A., Liu X., Filgueira L., Frazer I. H., Thomas R. 2004; Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology 324:297–310 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80652-0
Loading
/content/journal/jgv/10.1099/vir.0.80652-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error