1887

Abstract

Rotavirus genomes contain 11 double-stranded (ds) RNA segments. Genome segment 11 encodes the non-structural protein NSP5 and, in some strains, also NSP6. NSP5 is produced soon after viral infection and localizes in cytoplasmic viroplasms, where virus replication takes place. RNA interference by small interfering (si) RNAs targeted to genome segment 11 mRNA of two different strains blocked production of NSP5 in a strain-specific manner, with a strong effect on the overall replicative cycle: inhibition of viroplasm formation, decreased production of other structural and non-structural proteins, synthesis of viral genomic dsRNA and production of infectious particles. These effects were shown not to be due to inhibition of NSP6. The results obtained strengthen the importance of secondary transcription/translation in rotavirus replication and demonstrate that NSP5 is essential for the assembly of viroplasms and virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80598-0
2005-05-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861481.html?itemId=/content/journal/jgv/10.1099/vir.0.80598-0&mimeType=html&fmt=ahah

References

  1. Acs, G., Klett, H., Schonberg, M., Christman, J., Levin, D. H. & Silverstein, S. C. ( 1971; ). Mechanism of reovirus double-stranded ribonucleic acid synthesis in vivo and in vitro. J Virol 8, 684–689.
    [Google Scholar]
  2. Afrikanova, I., Miozzo, M. C., Giambiagi, S. & Burrone, O. ( 1996; ). Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77, 2059–2065.[CrossRef]
    [Google Scholar]
  3. Afrikanova, I., Fabbretti, E., Miozzo, M. C. & Burrone, O. R. ( 1998; ). Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79, 2679–2686.
    [Google Scholar]
  4. Aponte, C., Poncet, D. & Cohen, J. ( 1996; ). Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody against NSP2. J Virol 70, 985–991.
    [Google Scholar]
  5. Berois, M., Sapin, C., Erk, I., Poncet, D. & Cohen, J. ( 2003; ). Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77, 1757–1763.[CrossRef]
    [Google Scholar]
  6. Bican, P., Cohen, J., Charpilienne, A. & Scherrer, R. ( 1982; ). Purification and characterization of bovine rotavirus cores. J Virol 43, 1113–1117.
    [Google Scholar]
  7. Chen, D., Gombold, J. L. & Ramig, R. F. ( 1990; ). Intracellular RNA synthesis directed by temperature-sensitive mutants of simian rotavirus SA11. Virology 178, 143–151.[CrossRef]
    [Google Scholar]
  8. Dector, M. A., Romero, P., Lopez, S. & Arias, C. F. ( 2002; ). Rotavirus gene silencing by small interfering RNAs. EMBO Rep 3, 1175–1180.[CrossRef]
    [Google Scholar]
  9. Eichwald, C., Vascotto, F., Fabbretti, E. & Burrone, O. R. ( 2002; ). Rotavirus NSP5: mapping phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76, 3461–3470.[CrossRef]
    [Google Scholar]
  10. Eichwald, C., Rodriguez, J. F. & Burrone, O. R. ( 2004; ). Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J Gen Virol 85, 625–634.[CrossRef]
    [Google Scholar]
  11. Estes, M. K., Graham, D. Y., Gerba, C. P. & Smith, E. M. ( 1979; ). Simian rotavirus SA11 replication in cell cultures. J Virol 31, 810–815.
    [Google Scholar]
  12. Fabbretti, E., Afrikanova, I., Vascotto, F. & Burrone, O. R. ( 1999; ). Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J Gen Virol 80, 333–339.
    [Google Scholar]
  13. Gallegos, C. O. & Patton, J. T. ( 1989; ). Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172, 616–627.[CrossRef]
    [Google Scholar]
  14. Gonzalez, S. A. & Burrone, O. R. ( 1989; ). Porcine OSU rotavirus segment II sequence shows common features with the viral gene of human origin. Nucleic Acids Res 17, 6402.[CrossRef]
    [Google Scholar]
  15. Gonzalez, S. A. & Burrone, O. R. ( 1991; ). Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine. Virology 182, 8–16.[CrossRef]
    [Google Scholar]
  16. Gorziglia, M., Nishikawa, K. & Fukuhara, N. ( 1989; ). Evidence of duplication and deletion in super short segment 11 of rabbit rotavirus Alabama strain. Virology 170, 587–590.[CrossRef]
    [Google Scholar]
  17. Kapadia, S. B., Brideau-Andersen, A. & Chisari, F. V. ( 2003; ). Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A 100, 2014–2018.[CrossRef]
    [Google Scholar]
  18. Kattoura, M. D., Clapp, L. L. & Patton, J. T. ( 1992; ). The rotavirus nonstructural protein, NS35, possesses RNA-binding activity in vitro and in vivo. Virology 191, 698–708.[CrossRef]
    [Google Scholar]
  19. Kattoura, M. D., Chen, X. & Patton, J. T. ( 1994; ). The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202, 803–813.[CrossRef]
    [Google Scholar]
  20. Kohli, E., Pothier, P., Tosser, G., Cohen, J., Sandino, A. M. & Spencer, E. ( 1993; ). In vitro reconstitution of rotavirus transcriptional activity using viral cores and recombinant baculovirus expressed VP6. Arch Virol 133, 451–458.[CrossRef]
    [Google Scholar]
  21. Kojima, K., Taniguchi, K., Urasawa, T. & Urasawa, S. ( 1996; ). Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. Virology 224, 446–452.[CrossRef]
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Lawton, J. A., Estes, M. K. & Prasad, B. V. ( 2000; ). Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55, 185–229.
    [Google Scholar]
  24. Lopez, T., Camacho, M., Zayas, M., Najera, R., Sanchez, R., Arias, C. F. & Lopez, S. ( 2005; ). Silencing the morphogenesis of rotavirus. J Virol 79, 184–192.[CrossRef]
    [Google Scholar]
  25. Mattion, N. M., Mitchell, D. B., Both, G. W. & Estes, M. K. ( 1991; ). Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181, 295–304.[CrossRef]
    [Google Scholar]
  26. Patton, J. T. & Chen, D. ( 1999; ). RNA-binding and capping activities of proteins in rotavirus open cores. J Virol 73, 1382–1391.
    [Google Scholar]
  27. Patton, J. T. & Gallegos, C. O. ( 1988; ). Structure and protein composition of the rotavirus replicase particle. Virology 166, 358–365.[CrossRef]
    [Google Scholar]
  28. Poncet, D., Lindenbaum, P., L'Haridon, R. & Cohen, J. ( 1997; ). In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J Virol 71, 34–41.
    [Google Scholar]
  29. Ramig, R. F. & Petrie, B. L. ( 1984; ). Characterization of temperature-sensitive mutants of simian rotavirus SA11: protein synthesis and morphogenesis. J Virol 49, 665–673.
    [Google Scholar]
  30. Sakuma, S. & Watanabe, Y. ( 1971; ). Unilateral synthesis of reovirus double-stranded ribonucleic acid by a cell-free replicase system. J Virol 8, 190–196.
    [Google Scholar]
  31. Silvestri, L. S., Taraporewala, Z. F. & Patton, J. T. ( 2004; ). Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J Virol 78, 7763–7774.[CrossRef]
    [Google Scholar]
  32. Skup, D. & Millward, S. ( 1980; ). Reovirus-induced modification of cap-dependent translation in infected L cells. Proc Natl Acad Sci U S A 77, 152–156.[CrossRef]
    [Google Scholar]
  33. Taraporewala, Z. F. & Patton, J. T. ( 2001; ). Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75, 4519–4527.[CrossRef]
    [Google Scholar]
  34. Taraporewala, Z., Chen, D. & Patton, J. T. ( 1999; ). Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 73, 9934–9943.
    [Google Scholar]
  35. Thouvenin, E., Schoehn, G., Rey, F. & 7 other authors ( 2001; ). Antibody inhibition of the transcriptase activity of the rotavirus DLP: a structural view. J Mol Biol 307, 161–172.[CrossRef]
    [Google Scholar]
  36. Vascotto, F., Campagna, M., Visintin, M., Cattaneo, A. & Burrone, O. R. ( 2004; ). Effects of intrabodies specific for rotavirus NSP5 during the virus replicative cycle. J Gen Virol 85, 3285–3290.[CrossRef]
    [Google Scholar]
  37. Welch, S. K., Crawford, S. E. & Estes, M. K. ( 1989; ). Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol 63, 3974–3982.
    [Google Scholar]
  38. Zweerink, H. J. & Joklik, W. K. ( 1970; ). Studies on the intracellular synthesis of reovirus-specified proteins. Virology 41, 501–518.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80598-0
Loading
/content/journal/jgv/10.1099/vir.0.80598-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error