1887

Abstract

Recently developed integrase inhibitors targeting the HIV-1 integrase (IN) protein block integration of HIV DNA in the target cell, preventing subsequent virus replication. In the absence of integration, viral DNA is shunted towards the formation of extrachromosomal DNA (E-DNA). Although HIV-1 E-DNA does not support productive replication, it is transcriptionally active and produces viral proteins. However, the significance of E-DNA in virus replication and pathogenesis is poorly understood. In this study, the functional activity of the HIV-1 Nef protein expressed in the absence of viral integration was analysed. Using both a recombinant HIV-1 IN defective virus and a diketo acid IN inhibitor, evidence was provided showing that Nef expressed from E-DNA downregulates CD4 surface expression on primary CD4 T lymphocytes. These results suggest that proteins expressed in the absence of integration may have potential clinical consequences, an issue that should be further explored with the introduction of IN inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80570-0
2005-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860765.html?itemId=/content/journal/jgv/10.1099/vir.0.80570-0&mimeType=html&fmt=ahah

References

  1. Aiken, C., Konner, J., Landau, N. R., Lenburg, M. E. & Trono, D. ( 1994; ). Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76, 853–864.[CrossRef]
    [Google Scholar]
  2. Ansari-Lari, M. A., Donehower, L. A. & Gibbs, R. A. ( 1995; ). Analysis of human immunodeficiency virus type 1 integrase mutants. Virology 213, 680.
    [Google Scholar]
  3. Brussel, A., Mathez, D., Broche-Pierre, S., Lancar, R., Calvez, T., Sonigo, P. & Leibowitch, J. ( 2003; ). Longitudinal monitoring of 2-long terminal repeat circles in peripheral blood mononuclear cells from patients with chronic HIV-1 infection. AIDS 17, 645–652.[CrossRef]
    [Google Scholar]
  4. Butler, S. L., Hansen, M. S. & Bushman, F. D. ( 2001; ). A quantitative assay for HIV DNA integration in vivo. Nat Med 7, 631–634.[CrossRef]
    [Google Scholar]
  5. Butler, S. L., Johnson, E. P. & Bushman, F. D. ( 2002; ). Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J Virol 76, 3739–3747.[CrossRef]
    [Google Scholar]
  6. Cara, A., Cereseto, A., Lori, F. & Reitz, M. S., Jr ( 1996; ). HIV-1 protein expression from synthetic circles of DNA mimicking the extrachromosomal forms of viral DNA. J Biol Chem 271, 5393–5397.[CrossRef]
    [Google Scholar]
  7. Cara, A., Vargas, J., Jr, Keller, M. & 9 other authors ( 2002; ). Circular viral DNA and anomalous junction sequence in PBMC of HIV-infected individuals with no detectable plasma HIV RNA. Virology 292, 1–5.[CrossRef]
    [Google Scholar]
  8. Chen, B. K., Gandhi, R. T. & Baltimore, D. ( 1996; ). CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J Virol 70, 6044–6053.
    [Google Scholar]
  9. Cullen, B. R. ( 1998; ). HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93, 685–692.[CrossRef]
    [Google Scholar]
  10. Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A. & Craigie, R. ( 1995; ). Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69, 2729–2736.
    [Google Scholar]
  11. Fang, J. Y., Mikovits, J. A., Bagni, R., Petrow-Sadowski, C. L. & Ruscetti, F. W. ( 2001; ). Infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J Virol 75, 9753–9761.[CrossRef]
    [Google Scholar]
  12. Farnet, C. M. & Haseltine, W. A. ( 1991; ). Circularization of human immunodeficiency virus type 1 DNA in vitro. J Virol 65, 6942–6952.
    [Google Scholar]
  13. Gillim-Ross, L., Cara, A. & Klotman, M. E. ( 2005; ). HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol 18 (in press).
    [Google Scholar]
  14. Hazuda, D. J., Felock, P., Witmer, M. & 8 other authors ( 2000; ). Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287, 646–650.[CrossRef]
    [Google Scholar]
  15. Husain, M., Gusella, G. L., Klotman, M. E., Gelman, I. H., Ross, M. D., Schwartz, E. J., Cara, A. & Klotman, P. E. ( 2002; ). HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J Am Soc Nephrol 13, 1806–1815.[CrossRef]
    [Google Scholar]
  16. Klotman, M. E., Kim, S., Buchbinder, A., DeRossi, A., Baltimore, D. & Wong-Staal, F. ( 1991; ). Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proc Natl Acad Sci U S A 88, 5011–5015.[CrossRef]
    [Google Scholar]
  17. Li, L., Olvera, J. M., Yoder, K. E., Mitchell, R. S., Butler, S. L., Lieber, M., Martin, S. L. & Bushman, F. D. ( 2001; ). Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20, 3272–3281.[CrossRef]
    [Google Scholar]
  18. Lundquist, C. A., Tobiume, M., Zhou, J., Unutmaz, D. & Aiken, C. ( 2002; ). Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 76, 4625–4633.[CrossRef]
    [Google Scholar]
  19. Mangasarian, A., Foti, M., Aiken, C., Chin, D., Carpentier, J. L. & Trono, D. ( 1997; ). The HIV-1 Nef protein acts as a connector with sorting pathways in the Golgi and at the plasma membrane. Immunity 6, 67–77.[CrossRef]
    [Google Scholar]
  20. Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O. & Reiser, J. ( 1998; ). High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72, 8873–8883.
    [Google Scholar]
  21. Nakajima, N., Lu, R. & Engelman, A. ( 2001; ). Human immunodeficiency virus type 1 replication in the absence of integrase-mediated DNA recombination: definition of permissive and nonpermissive T-cell lines. J Virol 75, 7944–7955.[CrossRef]
    [Google Scholar]
  22. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M. & Trono, D. ( 1996; ). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.[CrossRef]
    [Google Scholar]
  23. Pang, S., Koyanagi, Y., Miles, S., Wiley, C., Vinters, H. V. & Chen, I. S. ( 1990; ). High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343, 85–89.[CrossRef]
    [Google Scholar]
  24. Pauza, C. D. & Galindo, J. ( 1989; ). Persistent human immunodeficiency virus type 1 infection of monoblastoid cells leads to accumulation of self-integrated viral DNA and to production of defective virions. J Virol 63, 3700–3707.
    [Google Scholar]
  25. Pierson, T. C., Kieffer, T. L., Ruff, C. T., Buck, C., Gange, S. J. & Siliciano, R. F. ( 2002; ). Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J Virol 76, 4138–4144.[CrossRef]
    [Google Scholar]
  26. Poon, B. & Chen, I. S. ( 2003; ). Human immunodeficiency virus type 1 (HIV-1) Vpr enhances expression from unintegrated HIV-1 DNA. J Virol 77, 3962–3972.[CrossRef]
    [Google Scholar]
  27. Reinke, R., Lee, D. J. & Robinson, W. E., Jr ( 2002; ). Inhibition of human immunodeficiency virus type 1 isolates by the integrase inhibitor L-731, 988, a diketo acid. Antimicrob Agents Chemother 46, 3301–3303.[CrossRef]
    [Google Scholar]
  28. Rhee, S. S. & Marsh, J. W. ( 1994; ). Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization and degradation of surface CD4. J Virol 68, 5156–5163.
    [Google Scholar]
  29. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. ( 1996; ). Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2, 338–342.[CrossRef]
    [Google Scholar]
  30. Shaw, G. M., Hahn, B. H., Arya, S. K., Groopman, J. E., Gallo, R. C. & Wong-Staal, F. ( 1984; ). Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 226, 1165–1171.[CrossRef]
    [Google Scholar]
  31. Stevenson, M., Haggerty, S., Lamonica, C. A., Meier, C. M., Welch, S. K. & Wasiak, A. J. ( 1990a; ). Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. J Virol 64, 2421–2425.
    [Google Scholar]
  32. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. ( 1990b; ). HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9, 1551–1560.
    [Google Scholar]
  33. Swingler, S., Mann, A., Jacque, J. & 8 other authors ( 1999; ). HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5, 997–103.[CrossRef]
    [Google Scholar]
  34. Swingler, S., Brichacek, B., Jacque, J. M., Ulich, C., Zhou, J. & Stevenson, M. ( 2003; ). HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424, 213–219.[CrossRef]
    [Google Scholar]
  35. Teo, I., Veryard, C., Barnes, H., An, S. F., Jones, M., Lantos, P. L., Luthert, P. & Shaunak, S. ( 1997; ). Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol 71, 2928–2933.
    [Google Scholar]
  36. Vandegraaff, N., Kumar, R., Hocking, H., Burke, T. R., Jr, Mills, J., Rhodes, D., Burrell, C. J. & Li, P. ( 2001; ). Specific inhibition of human immunodeficiency virus type 1 (HIV-1) integration in cell culture: putative inhibitors of HIV-1 integrase. Antimicrob Agents Chemother 45, 2510–2516.[CrossRef]
    [Google Scholar]
  37. Wiskerchen, M. & Muesing, M. A. ( 1995; ). Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates and sustain viral propagation in primary cells. J Virol 69, 376–386.
    [Google Scholar]
  38. Wu, Y. & Marsh, J. W. ( 2001; ). Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293, 1503–1506.[CrossRef]
    [Google Scholar]
  39. Wu, Y. & Marsh, J. W. ( 2003; ). Early transcription from nonintegrated DNA in human immunodeficiency virus infection. J Virol 77, 10376–10382.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80570-0
Loading
/content/journal/jgv/10.1099/vir.0.80570-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error