Human papillomavirus 16 virus-like particles use heparan sulfates to bind dendritic cells and colocalize with langerin in Langerhans cells Free

Abstract

Langerhans cells (LC), the immature dendritic cells (DC) that reside in epithelial tissues are among the first immune cells to encounter human papillomavirus (HPV) and are not activated by HPV virus-like particles (VLPs) in contrast to DC. The notion that the differences in response to HPV VLPs between LC and DC are associated with different types of cell binding and intracellular trafficking has been addressed. Inhibition experiments with heparin and sodium chlorate showed that heparan sulfates are necessary for HPV 16 VLPs to bind to DC but not to LC. Electron microscopy analysis demonstrated a colocalization of HPV 16 VLPs and langerin, which is expressed only by LC. This colocalization was observed on the cell surface but also in cytoplasmic vesicles. As anti-langerin antibodies, HPV 16 VLPs were associated with a faster entry kinetics in LC, as reflected by the fact that VLPs were observed near the nuclear membrane of LC within 10 min whereas more than 60 min were needed in DC. However, no difference between LC and DC was observed for the endocytosis pathway. HPV 16 VLPs entered in both DC and LC by a clathrin-dependent-pathway and were then localized in large cytoplasmic vesicles resembling endosomes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80559-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861297.html?itemId=/content/journal/jgv/10.1099/vir.0.80559-0&mimeType=html&fmt=ahah

References

  1. Bergsdorf C., Beyer C., Umansky V., Werr M., Sapp M. 2003; Highly efficient transport of carboxyfluorescein diacetate succinimidyl ester into COS7 cells using human papillomavirus-like particles. FEBS Lett 536:120–124 [CrossRef]
    [Google Scholar]
  2. Bousarghin L., Combita-Rojas A. L., Touze A., El Mehdaoui S., Sizaret P. Y., Bravo M. M., Coursaget P. 2002; Detection of neutralizing antibodies against human papillomaviruses (HPV) by inhibition of gene transfer mediated by HPV pseudovirions. J Clin Microbiol 40:926–932 [CrossRef]
    [Google Scholar]
  3. Bousarghin L., Touze A., Combita-Rojas A. L., Coursaget P. 2003a; Positively charged sequences of human papillomavirus type 16 capsid proteins are sufficient to mediate gene transfer into target cells via the heparan sulfate receptor. J Gen Virol 84:157–164 [CrossRef]
    [Google Scholar]
  4. Bousarghin L., Touze A., Sizaret P. Y., Coursaget P. 2003b; Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 77:3846–3850 [CrossRef]
    [Google Scholar]
  5. Calore E. E., Cavaliere M. J., Calore N. M. 1998; Squamous intraepithelial lesions in cervical smears of human immunodeficiency virus-seropositive adolescents. Diagn Cytopathol 18:91–92 [CrossRef]
    [Google Scholar]
  6. Chen L., Ashe S., Singhal M. C., Galloway D. A., Hellstrom I., Hellstrom K. E. 1993; Metastatic conversion of cells by expression of human papillomavirus type 16 E6 and E7 genes. Proc Natl Acad Sci U S A 90:6523–6527 [CrossRef]
    [Google Scholar]
  7. Christensen N. D., Reed C. A., Cladel N. M., Hall K., Leiserowitz G. S. 1996; Monoclonal antibodies to HPV-6 L1 virus-like particles identify conformational and linear neutralizing epitopes on HPV-11 in addition to type-specific epitopes on HPV-6. Virology 224:477–486 [CrossRef]
    [Google Scholar]
  8. Day P. M., Lowy D. R., Schiller J. T. 2003; Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307:1–11 [CrossRef]
    [Google Scholar]
  9. Drillien R., Spehner D., Bohbot A., Hanau D. 2000; Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 268:471–481 [CrossRef]
    [Google Scholar]
  10. Drobni P., Mistry N., McMillan N., Evander M. 2003; Carboxy-fluorescein diacetate, succinimidyl ester labeled papillomavirus virus-like particles fluoresce after internalization and interact with heparan sulfate for binding and entry. Virology 310:163–172 [CrossRef]
    [Google Scholar]
  11. Ellerbrock T. V., Chiasson M. A., Bush T. J., Sun X. W., Sawo D., Brudney K., Wright T. C. Jr 2000; Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA 283:1031–1037 [CrossRef]
    [Google Scholar]
  12. Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W. I., Steinman R. M., Bhardwaj N. 1999; Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768
    [Google Scholar]
  13. Evander M., Frazer I. H., Payne E., Qi Y. M., Hengst K., McMillan N. A. 1997; Identification of the α 6 integrin as a candidate receptor for papillomaviruses. J Virol 71:2449–2456
    [Google Scholar]
  14. Evans T. G., Bonnez W., Rose R. C. 8 other authors 2001; A phase 1 study of a recombinant viruslike particle vaccine against human papillomavirus type 11 in healthy adult volunteers. J Infect Dis 183:1485–1493 [CrossRef]
    [Google Scholar]
  15. Farley J. R., Nakayama G., Cryns D., Segel I. H. 1978; Adenosine triphosphate sulfurylase from Penicillium chrysogenum equilibrium binding, substrate hydrolysis, and isotope exchange studies. Arch Biochem Biophys 185:376–390 [CrossRef]
    [Google Scholar]
  16. Fausch S. C., Da Silva D. M., Rudolf M. P., Kast W. M. 2002; Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol 169:3242–3249 [CrossRef]
    [Google Scholar]
  17. Fausch S. C., Da Silva D. M., Kast W. M. 2003; Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. Cancer Res 63:3478–3482
    [Google Scholar]
  18. Fithian E., Kung P., Goldstein G., Rubenfeld M., Fenoglio C., Edelson R. 1981; Reactivity of Langerhans cells with hybridoma antibody. Proc Natl Acad Sci U S A 78:2541–2544 [CrossRef]
    [Google Scholar]
  19. Gantner B. N., Simmons R. M., Canavera S. J., Akira S., Underhill D. M. 2003; Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med 197:1107–1117 [CrossRef]
    [Google Scholar]
  20. Giannini S. L., Hubert P., Doyen J., Boniver J., Delvenne P. 2002; Influence of the mucosal epithelium microenvironment on Langerhans cells: implications for the development of squamous intraepithelial lesions of the cervix. Int J Cancer 97:654–659 [CrossRef]
    [Google Scholar]
  21. Giroglou T., Florin L., Schafer F., Streeck R. E., Sapp M. 2001; Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75:1565–1570 [CrossRef]
    [Google Scholar]
  22. Grosjean I., Caux C., Bella C., Berger I., Wild F., Banchereau J., Kaiserlian D. 1997; Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186:801–812 [CrossRef]
    [Google Scholar]
  23. Hagensee M. E., Yaegashi N., Galloway D. A. 1993; Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67:315–322
    [Google Scholar]
  24. Harro C. D., Pang Y. Y., Roden R. B. 10 other authors 2001; Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst 93:284–292 [CrossRef]
    [Google Scholar]
  25. Janeway C. A. Jr, Medzhitov R. 2002; Innate immune recognition. Annu Rev Immunol 20:197–216 [CrossRef]
    [Google Scholar]
  26. Johnson G. B., Brunn G. J., Kodaira Y., Platt J. L. 2002; Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol 168:5233–5239 [CrossRef]
    [Google Scholar]
  27. Joyce J. G., Tung J. S., Przysiecki C. T., Cook J. C., Lehman E. D., Sands J. A., Jansen K. U., Keller P. M. 1999; The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274:5810–5822 [CrossRef]
    [Google Scholar]
  28. Kirnbauer R., Taub J., Greenstone H., Roden R., Durst M., Gissmann L., Lowy D. R., Schiller J. T. 1993; Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol 67:6929–6936
    [Google Scholar]
  29. Kodaira Y., Platt J. L. 2000; Modification of antigen-presenting cell functions by heparan sulfate. Transplant Proc 32:947 [CrossRef]
    [Google Scholar]
  30. Koutsky L. A., Ault K. A., Wheeler C. M., Brown D. R., Barr E., Alvarez F. B., Chiacchierini L. M., Jansen K. U. 2002; A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347:1645–1651 [CrossRef]
    [Google Scholar]
  31. Lenz P., Day P. M., Pang Y. Y., Frye S. A., Jensen P. N., Lowy D. R., Schiller J. T. 2001; Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355 [CrossRef]
    [Google Scholar]
  32. Matyszak M. K., Young J. L., Gaston J. S. 2002; Uptake and processing of Chlamydia trachomatis by human dendritic cells. Eur J Immunol 32:742–751 [CrossRef]
    [Google Scholar]
  33. McDermott R., Ziylan U., Spehner D. 9 other authors 2002; Birbeck granules are subdomains of endosomal recycling compartment in human epidermal Langerhans cells, which form where Langerin accumulates. Mol Biol Cell 13:317–335 [CrossRef]
    [Google Scholar]
  34. Mummert M. E., Mummert D., Edelbaum D., Hui F., Matsue H., Takashima A. 2002; Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J Immunol 169:4322–4331 [CrossRef]
    [Google Scholar]
  35. Narayan S., Barnard R. J., Young J. A. 2003; Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J Virol 77:1977–1983 [CrossRef]
    [Google Scholar]
  36. Niedergang F., Didierlaurent A., Kraehenbuhl J. P., Sirard J. C. 2004; Dendritic cells: the host Achille's heel for mucosal pathogens?. Trends Microbiol 12:79–88 [CrossRef]
    [Google Scholar]
  37. Petry K. U., Scheffel D., Bode U. 7 other authors 1994; Cellular immunodeficiency enhances the progression of human papillomavirus-associated cervical lesions. Int J Cancer 57:836–840 [CrossRef]
    [Google Scholar]
  38. Richart R. M. 1987; Causes and management of cervical intraepithelial neoplasia. Cancer 60:1951–1959 [CrossRef]
    [Google Scholar]
  39. Richart R. M., Barron B. A. 1967; The intrauterine device and cervical neoplasia. A prospective study of patients with cervical dysplasia. JAMA 199:817–819 [CrossRef]
    [Google Scholar]
  40. Rose R. C., Bonnez W., Reichman R. C., Garcea R. L. 1993; Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67:1936–1944
    [Google Scholar]
  41. Rudolf M. P., Fausch S. C., Da Silva D. M., Kast W. M. 2001; Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol 166:5917–5924 [CrossRef]
    [Google Scholar]
  42. Selinka H. C., Giroglou T., Sapp M. 2002; Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299:279–287 [CrossRef]
    [Google Scholar]
  43. Tassaneetrithep B., Burgess T. H., Granelli-Piperno A. 10 other authors 2003; DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829 [CrossRef]
    [Google Scholar]
  44. Touze A., El Mehdaoui S., Sizaret P. Y., Mougin C., Munoz N., Coursaget P. 1998; The L1 major capsid protein of human papillomavirus type 16 variants affects yield of virus-like particles produced in an insect cell expression system. J Clin Microbiol 36:2046–2051
    [Google Scholar]
  45. Turville S. G., Cameron P. U., Handley A., Lin G., Pohlmann S., Doms R. W., Cunningham A. L. 2002; Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3:975–983 [CrossRef]
    [Google Scholar]
  46. Valladeau J., Duvert-Frances V., Pin J. J. 9 other authors 1999; The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 29:2695–2704 [CrossRef]
    [Google Scholar]
  47. Valladeau J., Ravel O., Dezutter-Dambuyant C. 10 other authors 2000; Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81 [CrossRef]
    [Google Scholar]
  48. Wrenshall L. E., Cerra F. B., Carlson A., Bach F. H., Platt J. L. 1991; Regulation of murine splenocyte responses by heparan sulfate. J Immunol 147:455–459
    [Google Scholar]
  49. Yan M., Peng J., Jabbar I. A., Liu X., Filgueira L., Frazer I. H., Thomas R. 2004; Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology 324:297–310 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80559-0
Loading
/content/journal/jgv/10.1099/vir.0.80559-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed