1887

Abstract

Susceptibility to transmissible spongiform encephalopathies (TSEs) is associated strongly with PrP polymorphisms in humans, sheep and rodents. In mice, scrapie incubation time is controlled by polymorphisms at PrP codons 108 (leucine or phenylalanine) and 189 (threonine or valine), but the precise role of each polymorphism in the control of disease is unknown. The L108F and T189V polymorphisms are present in distinct structural regions of PrP and thus provide an excellent model with which to investigate the role of PrP structure and gene variation in TSEs. Two unique lines of transgenic mice, in which 108F and 189V have been targeted separately into the endogenous murine gene, have been produced. TSE inoculation of inbred lines of mice expressing all allelic combinations at codons 108 and 189 has revealed a complex relationship between PrP allele and incubation time. It has been established that both codons 108 and 189 control TSE incubation time, and that each polymorphism plays a distinct role in the disease process. Comparison of ME7 incubation times in mouse lines that are heterozygous at both codons has also identified a previously unrecognized intramolecular interaction between PrP codons 108 and 189.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80525-0
2005-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860859.html?itemId=/content/journal/jgv/10.1099/vir.0.80525-0&mimeType=html&fmt=ahah

References

  1. Alperovitch, A., Zerr, I., Pocchiari, M. & 7 other authors ( 1999; ). Codon 129 prion protein genotype and sporadic Creutzfeldt-Jakob disease. Lancet 353, 1673–1674.[CrossRef]
    [Google Scholar]
  2. Barron, R. M. & Manson, J. C. ( 2004; ). Targeting the murine PrP gene. In Prions and Prion Diseases: Current Perspectives, pp. 103–119. Edited by G. C. Telling. Wymondham, UK: Horizon Bioscience.
  3. Barron, R. M., Thomson, V., King, D., Shaw, J., Melton, D. W. & Manson, J. C. ( 2003; ). Transmission of murine scrapie to P101L transgenic mice. J Gen Virol 84, 3165–3172.[CrossRef]
    [Google Scholar]
  4. Basler, K., Oesch, B., Scott, M., Westaway, D., Wälchli, M., Groth, D. F., McKinley, M. P., Prusiner, S. B. & Weissmann, C. ( 1986; ). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428.[CrossRef]
    [Google Scholar]
  5. Brown, D. R., Iordanova, I. K., Wong, B.-S. & 8 other authors ( 2000; ). Functional and structural differences between the prion protein from two alleles prnpa and prnpb of mouse. Eur J Biochem 267, 2452–2459.[CrossRef]
    [Google Scholar]
  6. Carlson, G. A., Kingsbury, D. T., Goodman, P. A., Coleman, S., Marshall, S. T., DeArmond, S., Westaway, D. & Prusiner, S. B. ( 1986; ). Linkage of prion protein and scrapie incubation time genes. Cell 46, 503–511.[CrossRef]
    [Google Scholar]
  7. Caughey, B. ( 2001; ). Interactions between prion protein isoforms: the kiss of death? Trends Biochem Sci 26, 235–242.[CrossRef]
    [Google Scholar]
  8. Chomczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.
    [Google Scholar]
  9. Dickinson, A. G., Meikle, V. M. & Fraser, H. ( 1968; ). Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J Comp Pathol 78, 293–299.[CrossRef]
    [Google Scholar]
  10. Fischer, M., Rülicke, T., Raeber, A., Sailer, A., Moser, M., Oesch, B., Brandner, S., Aguzzi, A. & Weissmann, C. ( 1996; ). Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15, 1255–1264.
    [Google Scholar]
  11. Flechsig, E., Shmerling, D., Hegyi, I., Raeber, A. J., Fischer, M., Cozzio, A., von Mering, C., Aguzzi, A. & Weissmann, C. ( 2000; ). Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27, 399–408.[CrossRef]
    [Google Scholar]
  12. Fraser, H. & Dickinson, A. G. ( 1967; ). Distribution of experimentally induced scrapie lesions in the brain. Nature 216, 1310–1311.[CrossRef]
    [Google Scholar]
  13. Goldfarb, L. G., Petersen, R. B., Tabaton, M. & 18 other authors ( 1992; ). Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258, 806–808.[CrossRef]
    [Google Scholar]
  14. Goldmann, W., Hunter, N., Smith, G., Foster, J. & Hope, J. ( 1994; ). PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J Gen Virol 75, 989–995.[CrossRef]
    [Google Scholar]
  15. Gu, H., Zou, Y.-R. & Rajewsky, K. ( 1993; ). Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164.[CrossRef]
    [Google Scholar]
  16. Horiuchi, M., Priola, S. A., Chabry, J. & Caughey, B. ( 2000; ). Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci U S A 97, 5836–5841.[CrossRef]
    [Google Scholar]
  17. Jansen, K., Schafer, O., Birkmann, E., Post, K., Serban, H., Prusiner, S. B. & Riesner, D. ( 2001; ). Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form. Biol Chem 382, 683–691.
    [Google Scholar]
  18. Jarrett, J. T. & Lansbury, P. T., Jr ( 1993; ). Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.[CrossRef]
    [Google Scholar]
  19. Lakso, M., Sauer, B., Mosinger, B., Jr, Lee, E. J., Manning, R. W., Yu, S.-H., Mulder, K. L. & Westphal, H. ( 1992; ). Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89, 6232–6236.[CrossRef]
    [Google Scholar]
  20. Lawson, V. A., Priola, S. A., Wehrly, K. & Chesebro, B. ( 2001; ). N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J Biol Chem 276, 35265–35271.[CrossRef]
    [Google Scholar]
  21. Lawson, V. A., Priola, S. A., Meade-White, K., Lawson, M. & Chesebro, B. ( 2004; ). Flexible N-terminal region of prion protein influences conformation of protease-resistant prion protein isoforms associated with cross-species scrapie infection in vivo and in vitro. J Biol Chem 279, 13689–13695.[CrossRef]
    [Google Scholar]
  22. Li, R., Liu, T., Wong, B.-S. & 7 other authors ( 2000; ). Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus. J Mol Biol 301, 567–573.[CrossRef]
    [Google Scholar]
  23. Lloyd, S. E., Thompson, S. R., Beck, J. A., Linehan, J. M., Wadsworth, J. D. F., Brandner, S., Collinge, J. & Fisher, E. M. C. ( 2004; ). Identification and characterization of a novel mouse prion gene allele. Mamm Genome 15, 383–389.[CrossRef]
    [Google Scholar]
  24. Locht, C., Chesebro, B., Race, R. & Keith, J. M. ( 1986; ). Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc Natl Acad Sci U S A 83, 6372–6376.[CrossRef]
    [Google Scholar]
  25. Meier, P., Genoud, N., Prinz, M., Maissen, M., Rülicke, T., Zurbriggen, A., Raeber, A. J. & Aguzzi, A. ( 2003; ). Soluble dimeric prion protein binds PrPSc in vivo and antagonizes prion disease. Cell 113, 49–60.[CrossRef]
    [Google Scholar]
  26. Meyer, R. K., Lustig, A., Oesch, B., Fatzer, R., Zurbriggen, A. & Vandevelde, M. ( 2000; ). A monomer-dimer equilibrium of a cellular prion protein (PrPC) not observed with recombinant PrP. J Biol Chem 275, 38081–38087.[CrossRef]
    [Google Scholar]
  27. Moore, R. C. & Melton, D. W. ( 1995; ). Models of human disease through gene targeting. Biochem Soc Trans 23, 398–403.
    [Google Scholar]
  28. Moore, R. C., Redhead, N. J., Selfridge, J., Hope, J., Manson, J. C. & Melton, D. W. ( 1995; ). Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations. Biotechnology (N Y) 13, 999–1004.[CrossRef]
    [Google Scholar]
  29. Moore, R. C., Hope, J., McBride, P. A., McConnell, I., Selfridge, J., Melton, D. W. & Manson, J. C. ( 1998; ). Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat Genet 18, 118–125.[CrossRef]
    [Google Scholar]
  30. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. ( 1991; ). Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352, 340–342.[CrossRef]
    [Google Scholar]
  31. Priola, S. A., Caughey, B., Wehrly, K. & Chesebro, B. ( 1995; ). A 60-kDa prion protein (PrP) with properties of both the normal and scrapie-associated forms of PrP. J Biol Chem 270, 3299–3305.[CrossRef]
    [Google Scholar]
  32. Prusiner, S. B. ( 1982; ). Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.[CrossRef]
    [Google Scholar]
  33. Prusiner, S. B. ( 1996; ). Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 21, 482–487.[CrossRef]
    [Google Scholar]
  34. Selfridge, J., Pow, A. M., McWhir, J., Magin, T. M. & Melton, D. W. (1992; ). Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: inactivation of the mouse ERCC-1 gene. Somat Cell Mol Genet 18, 325–336.[CrossRef]
    [Google Scholar]
  35. Shmerling, D., Hegyi, I., Fischer, M. & 10 other authors ( 1998; ). Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214.[CrossRef]
    [Google Scholar]
  36. Supattapone, S., Muramoto, T., Legname, G., Mehlhorn, I., Cohen, F. E., DeArmond, S. J., Prusiner, S. B. & Scott, M. R. ( 2001; ). Identification of two prion protein regions that modify scrapie incubation time. J Virol 75, 1408–1413.[CrossRef]
    [Google Scholar]
  37. Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. ( 1989; ). Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321.[CrossRef]
    [Google Scholar]
  38. Warwicker, J. ( 1997; ). Species barriers in a model for specific prion protein dimerisation. Biochem Biophys Res Commun 232, 508–512.[CrossRef]
    [Google Scholar]
  39. Warwicker, J. ( 2000; ). Modeling a prion protein dimer: predictions for fibril formation. Biochem Biophys Res Commun 278, 646–652.[CrossRef]
    [Google Scholar]
  40. Weissmann, C. ( 1996; ). Molecular biology of transmissible spongiform encephalopathies. FEBS Lett 389, 3–11.[CrossRef]
    [Google Scholar]
  41. Westaway, D., Goodman, P. A., Mirenda, C. A., McKinley, M. P., Carlson, G. A. & Prusiner, S. B. ( 1987; ). Distinct prion proteins in short and long scrapie incubation period mice. Cell 51, 651–662.[CrossRef]
    [Google Scholar]
  42. Zeidler, M., Stewart, G., Cousens, S. N., Estibeiro, K. & Will, R. G. ( 1997; ). Codon 129 genotype and new variant CJD. Lancet 350, 668.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80525-0
Loading
/content/journal/jgv/10.1099/vir.0.80525-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 859 – 868

ME7 and 301V incubation times in mice expressing codon 108 and 189 polymorphisms [PDF](86 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error