1887

Abstract

The RNA-dependent RNA polymerase of the double-stranded RNA bacteriophage 6 is capable of primer-independent initiation, as are many RNA polymerases. The structure of this polymerase revealed an initiation platform, composed of a loop in the C-terminal domain (QYKW, aa 629–632), that was essential for de novo initiation. A similar element has been identified in hepatitis C virus RNA-dependent RNA polymerase. Biochemical studies have addressed the role of this platform, revealing that a mutant version can utilize a back-priming initiation mechanism, where the 3′ terminus of the template adopts a hairpin-like conformation. Here, the mechanism of back-primed initiation is studied further by biochemical and structural methods.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80492-0
2005-02-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860521.html?itemId=/content/journal/jgv/10.1099/vir.0.80492-0&mimeType=html&fmt=ahah

References

  1. Ago, H., Adachi, T., Yoshida, A., Yamamoto, M., Habuka, N., Yatsunami, K. & Miyano, M. ( 1999; ). Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure Fold Des 7, 1417–1426.[CrossRef]
    [Google Scholar]
  2. Behrens, S. E., Tomei, L. & De Francesco, R. ( 1996; ). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15, 12–22.
    [Google Scholar]
  3. Bressanelli, S., Tomei, L., Roussel, A., Incitti, I., Vitale, R. L., Mathieu, M., De Francesco, R. & Rey, F. A. ( 1999; ). Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci U S A 96, 13034–13039.[CrossRef]
    [Google Scholar]
  4. Bressanelli, S., Tomei, L., Rey, F. A. & De Francesco, R. ( 2002; ). Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76, 3482–3492.[CrossRef]
    [Google Scholar]
  5. Brunger, A. T., Adams, P. D., Clore, G. M. & 11 other authors ( 1998; ). Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905–921.
    [Google Scholar]
  6. Butcher, S. J., Grimes, J. M., Makeyev, E. V., Bamford, D. H. & Stuart, D. I. ( 2001; ). A mechanism for initiating RNA-dependent RNA polymerization. Nature 410, 235–240.[CrossRef]
    [Google Scholar]
  7. Cheetham, G. M. T. & Steitz, T. A. ( 2000; ). Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol 10, 117–123.[CrossRef]
    [Google Scholar]
  8. Choi, K. H., Groarke, J. M., Young, D. C., Kuhn, R. J., Smith, J. L., Pevear, D. C. & Rossmann, M. G. ( 2004; ). The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci U S A 101, 4425–4430.[CrossRef]
    [Google Scholar]
  9. Doublie, S., Sawaya, M. R. & Ellenberger, T. ( 1999; ). An open and closed case for all polymerases. Structure Fold Des 7, R31–R35.[CrossRef]
    [Google Scholar]
  10. Esnouf, R. M. ( 1997; ). Polyalanine reconstruction from Cα positions using the program CALPHA can aid initial phasing of data by molecular replacement procedures. Acta Crystallogr D Biol Crystallogr 53, 665–672.[CrossRef]
    [Google Scholar]
  11. Esnouf, R. M. ( 1999; ). Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr 55, 938–940.[CrossRef]
    [Google Scholar]
  12. Hong, Z., Cameron, C. E., Walker, M. P., Castro, C., Yao, N., Lau, J. Y. N. & Zhong, W. ( 2001; ). A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285, 6–11.[CrossRef]
    [Google Scholar]
  13. Kao, C. C., Singh, P. & Ecker, D. J. ( 2001; ). De novo initiation of viral RNA-dependent RNA synthesis. Virology 287, 251–260.[CrossRef]
    [Google Scholar]
  14. Koonin, E. V. ( 1991; ). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72, 2197–2206.[CrossRef]
    [Google Scholar]
  15. Laurila, M. R. L., Makeyev, E. V. & Bamford, D. H. ( 2002; ). Bacteriophage ϕ6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J Biol Chem 277, 17117–17124.[CrossRef]
    [Google Scholar]
  16. Lesburg, C. A., Cable, M. B., Ferrari, E., Hong, Z., Mannarino, A. F. & Weber, P. C. ( 1999; ). Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6, 937–943.[CrossRef]
    [Google Scholar]
  17. Luo, G., Hamatake, R. K., Mathis, D. M., Racela, J., Rigat, K. L., Lemm, J. & Colonno, R. J. ( 2000; ). De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol 74, 851–863.[CrossRef]
    [Google Scholar]
  18. Makeyev, E. V. ( 2001; ). RNA-dependent RNA polymerase of bacteriophage ϕ6. PhD thesis, University of Helsinki.
  19. Makeyev, E. V. & Bamford, D. H. ( 2000a; ). Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage ϕ6. EMBO J 19, 124–133.[CrossRef]
    [Google Scholar]
  20. Makeyev, E. V. & Bamford, D. H. ( 2000b; ). The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. EMBO J 19, 6275–6284.[CrossRef]
    [Google Scholar]
  21. Makeyev, E. V. & Bamford, D. H. ( 2001; ). Primer-independent RNA sequencing with bacteriophage ϕ6 RNA polymerase and chain terminators. RNA 7, 774–781.[CrossRef]
    [Google Scholar]
  22. Merritt, E. A. & Bacon, D. J. ( 1997; ). Raster3D: photorealistic molecular graphics. Methods Enzymol 277, 505–524.
    [Google Scholar]
  23. Mindich, L., Qiao, X., Onodera, S., Gottlieb, P. & Frilander, M. ( 1994; ). RNA structural requirements for stability and minus-strand synthesis in the dsRNA bacteriophage ϕ6. Virology 202, 258–263.[CrossRef]
    [Google Scholar]
  24. Ollis, D. L., Kline, C. & Steitz, T. A. ( 1985; ). Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. Nature 313, 818–819.[CrossRef]
    [Google Scholar]
  25. Otwinowski, Z. & Minor, W. ( 1997; ). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326.
    [Google Scholar]
  26. Pagratis, N. & Revel, H. R. ( 1990; ). Detection of bacteriophage ϕ6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels. Virology 177, 273–280.[CrossRef]
    [Google Scholar]
  27. Ranjith-Kumar, C. T., Kim, Y.-C., Gutshall, L., Silverman, C., Khandekar, S., Sarisky, R. T. & Kao, C. C. ( 2002a; ). Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals. J Virol 76, 12513–12525.[CrossRef]
    [Google Scholar]
  28. Ranjith-Kumar, C. T., Gutshall, L., Kim, M.-J., Sarisky, R. T. & Kao, C. C. ( 2002b; ). Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. J Virol 76, 12526–12536.[CrossRef]
    [Google Scholar]
  29. Ranjith-Kumar, C. T., Gutshall, L., Sarisky, R. T. & Kao, C. C. ( 2003; ). Multiple interactions within the hepatitis C virus RNA polymerase repress primer-dependent RNA synthesis. J Mol Biol 330, 675–685.[CrossRef]
    [Google Scholar]
  30. Salgado, P. S., Makeyev, E. V., Butcher, S. J., Bamford, D. H., Stuart, D. I. & Grimes, J. M. ( 2004; ). The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Structure (Camb) 12, 307–316.
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Sun, X.-L., Johnson, R. B., Hockman, M. A. & Wang, Q. M. ( 2000; ). De novo RNA synthesis catalyzed by HCV RNA-dependent RNA polymerase. Biochem Biophys Res Commun 268, 798–803.[CrossRef]
    [Google Scholar]
  33. van Dijk, A. A., Makeyev, E. V. & Bamford, D. H. ( 2004; ). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85, 1077–1093.[CrossRef]
    [Google Scholar]
  34. Yang, H., Makeyev, E. V. & Bamford, D. H. ( 2001; ). Comparison of polymerase subunits from double-stranded RNA bacteriophages. J Virol 75, 11088–11095.[CrossRef]
    [Google Scholar]
  35. Zhong, W., Gutshall, L. L. & Del Vecchio, A. M. ( 1998; ). Identification and characterization of an RNA-dependent RNA polymerase activity within the nonstructural protein 5B region of bovine viral diarrhea virus. J Virol 72, 9365–9369.
    [Google Scholar]
  36. Zhong, W., Ferrari, E., Lesburg, C. A., Maag, D., Ghosh, S. K. B., Cameron, C. E., Lau, J. Y. N. & Hong, Z. ( 2000a; ). Template/primer requirements and single nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase. J Virol 74, 9134–9143.[CrossRef]
    [Google Scholar]
  37. Zhong, W., Uss, A. S., Ferrari, E., Lau, J. Y. N. & Hong, Z. ( 2000b; ). De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. J Virol 74, 2017–2022.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80492-0
Loading
/content/journal/jgv/10.1099/vir.0.80492-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 521 – 526

Data collection and refinement statistics for the SG mutant [PDF file](116 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error